[1] M. Sun, X.X. Ma, B. Lv, X.M. Dai, Y. Yao, Y.Y. Liu, M. He, X.L. Zhao, Gradient separation of 300 C distillate from low-temperature coal tar based on formaldehyde reactions, Fuel 160(2015) 16-23. [2] M. Sun, X.X. Ma, Q.X. Yao, R.C. Wang, Y.X. Ma, G. Feng, J.X. Shang, L. Xu, Y.H. Yang, GC-MS and TG-FTIR study of petroleum ether extract and residue from low temperature coal tar, Energy Fuels 25(3) (2011) 1140-1145. [3] Z.H. Chen, D.M. Wang, C.M. Li, H. Yang, D.L. Wang, D.G. Lai, J. Yu, S.Q. Gao, A tandem pyrolysis-upgrading strategy in an integrated reactor to improve the quality of coal tar, Energy Convers. Manag. 220(2020) 113065. [4] L. Zhang, H. Shu, Y. Jia, L. Zhang, D. Xu, Study on solid waste pyrolysis coke catalyst for catalytic cracking of coal tar, Int. J. Hydrog. Energy 45(38) (2020) 19280-19290. [5] M.L. Niu, P.P. Ji, Z. Fan, Y.L. Yan, D. Li, W.H. Li, Hydrofining process of coal tar based on four kinds of catalyst grading, Energy Fuels 34(5) (2020) 6510-6517. [6] H.L. Li, W.W. Shan, S.G. Shen, Y.P. Ren, D.F. Zhang, R.J. Sun, Z.J. Zhou, X.P. Ma, Production of a gasoline blending component with high-octane and low sulfur from coal tar light oil over sulfided CoMoP/η-Al2O3, J. Clean. Prod. 228(2019) 965-973. [7] H.X. Ni, C.M. Xu, R. Wang, X.F. Guo, Y.H. Long, C. Ma, L.L. Yan, X.X. Liu, Q. Shi, Composition and transformation of sulfur-, oxygen-, and nitrogen-containing compounds in the hydrotreating process of a low-temperature coal tar, Energy Fuels 32(3) (2018) 3077-3084. [8] D. Leckel, Catalytic hydroprocessing of coal-derived gasification residues to fuel blending stocks:Effect of reaction variables and catalyst on hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), and hydrodesulfurization (HDS), Energy Fuels 20(5) (2006) 1761-1766. [9] T.J. Morgan, R. Kandiyoti, Pyrolysis of coals and biomass:Analysis of thermal breakdown and its products, Chem. Rev. 114(3) (2014) 1547-1607. [10] F. Mushtaq, R. Mat, F.N. Ani, A review on microwave assisted pyrolysis of coal and biomass for fuel production, Renew. Sustain. Energy Rev. 39(2014) 555-574. [11] J. Jae, G.A. Tompsett, A.J. Foster, K.D. Hammond, S.M. Auerbach, R.F. Lobo, G.W. Huber, Investigation into the shape selectivity of zeolite catalysts for biomass conversion, J. Catal. 279(2) (2011) 257-268. [12] Y. Li, M.N. Amin, X.M. Lu, C.S. Li, F.Q. Ren, S.J. Zhang, Pyrolysis and catalytic upgrading of low-rank coal using a NiO/MgO-Al2O3 catalyst, Chem. Eng. Sci. 155(2016) 194-200. [13] U. Khalil, O. Muraza, H. Kondoh, G. Watanabe, Y. Nakasaka, A. Al-Ame, M. Takao, Robust surface-modified beta zeolite for selective production of lighter fuels by steam-assisted catalytic cracking from heavy oil, Fuel 168(2016) 61-67. [14] R. Palos, A. Gutiérrez, M.L. Fernández, D. Trueba, J. Bilbao, J.M. Arandes, Upgrading of heavy coker naphtha by means of catalytic cracking in refinery FCC unit, Fuel Process. Technol. 205(2020) 106454. [15] M. Scarsella, B. de Caprariis, M. Damizia, P. De Filippis, Heterogeneous catalysts for hydrothermal liquefaction of lignocellulosic biomass:A review, Biomass Bioenergy 140(2020) 105662. [16] T.M. Ismail, S.W. Banks, Y. Yang, H.P. Yang, Y.Q. Chen, A.V. Bridgwater, K. Ramzy, M. Abd El-Salam, Coal and biomass co-pyrolysis in a fluidized-bed reactor:Numerical assessment of fuel type and blending conditions, Fuel 275(2020) 118004. [17] Y.Q. Liu, Q.X. Yao, M. Sun, T.T. Yuan, J.W. Gao, R.C. Wang, Y.J. Zhang, H.Y. Chen, X.X. Ma, Process characteristics and mechanisms for catalyzed pyrolysis of low-temperature coal tar, Energy Fuels 33(8) (2019) 7052-7061. [18] M. Asadieraghi, W.M.A. Wan Daud, In-situ catalytic upgrading of biomass pyrolysis vapor:Using a cascade system of various catalysts in a multi-zone fixed bed reactor, Energy Convers. Manag. 101(2015) 151-163. [19] J. Wang, J.C. Jiang, Y.J. Sun, Z.P. Zhong, X.B. Wang, H.H. Xia, G.H. Liu, S.S. Pang, K. Wang, M. Li, J.M. Xu, R. Ruan, A.J. Ragauskas, Recycling benzene and ethylbenzene from in situ catalytic fast pyrolysis of plastic wastes, Energy Convers. Manag. 200(2019) 112088. [20] Y.F. He, Y.N. Zhao, M.Y. Chai, Z.Y. Zhou, M. Sarker, C. Li, R.H. Liu, J.M. Cai, X.H. Liu, Comparative study of fast pyrolysis, hydropyrolysis and catalytic hydropyrolysis of poplar sawdust and rice husk in a modified Py-GC/MS microreactor system:Insights into product distribution, quantum description and reaction mechanism, Renew. Sustain. Energy Rev. 119(2020) 109604. [21] V.K. Venkatakrishnan, J.C. Degenstein, A.D. Smeltz, W.N. Delgass, R. Agrawal, F. H. Ribeiro, High-pressure fast-pyrolysis, fast-hydropyrolysis and catalytic hydrodeoxygenation of cellulose:Production of liquid fuel from biomass, Green Chem. 16(2) (2014) 792-802. [22] F.Q. Meng, W. Ma, Y.L. Wang, Z.Y. Zhu, Z. Chen, G. Lu, A tribo-positive Fe@MoS2 piezocatalyst for the durable degradation of tetracycline:Degradation mechanism and toxicity assessment, Environ. Sci.:Nano 7(6) (2020) 1704-1718. [23] F. Zhou, Y. Gao, G. Wu, F.W. Ma, C.T. Liu, Improved catalytic performance and decreased coke formation in post-treated ZSM-5 zeolites for methanol aromatization, Microporous Mesoporous Mater. 240(2017) 96-107. [24] P. Li, D. Li, H.P. Yang, X.H. Wang, H.P. Chen, Effects of Fe-, Zr-, and Co-modified zeolites and pretreatments on catalytic upgrading of biomass fast pyrolysis vapors, Energy Fuels 30(4) (2016) 3004-3013. [25] J. Wang, Z.P. Zhong, K. Ding, B. Zhang, A.D. Deng, M. Min, P. Chen, R. Ruan, Successive desilication and dealumination of HZSM-5 in catalytic conversion of waste cooking oil to produce aromatics, Energy Convers. Manag. 147(2017) 100-107. [26] M. Rutkowska, D. Macina, N. Mirocha-Kubień, Z. Piwowarska, L. Chmielarz, Hierarchically structured ZSM-5 obtained by desilication as new catalyst for DME synthesis from methanol, Appl. Catal. B:Environ. 174-175(2015) 336-343. [27] E.F. Iliopoulou, S. Stefanidis, K. Kalogiannis, A.C. Psarras, A. Delimitis, K.S. Triantafyllidis, A.A. Lappas, Pilot-scale validation of Co-ZSM-5 catalyst performance in the catalytic upgrading of biomass pyrolysis vapours, Green Chem. 16(2) (2014) 662-674. [28] E.F. Iliopoulou, S.D. Stefanidis, K.G. Kalogiannis, A. Delimitis, A.A. Lappas, K.S. Triantafyllidis, Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite, Appl. Catal. B:Environ. 127(2012) 281-290. [29] S.S.M. Konda, S. Caratzoulas, D.G. Vlachos, Computational insights into the role of metal and acid sites in bifunctional metal/zeolite catalysts:A case study of acetone hydrogenation to 2-propanol and subsequent dehydration to propene, ACS Catal. 6(1) (2016) 123-133. [30] M.H.W. Sonnemans, C. den Heijer, M. Crocker, Studies on the acidity of mordenite and ZSM 5.2. Loss of Broensted acidity by dehydroxylation and dealumination, J. Phys. Chem. 97(2) (1993) 440-445. [31] S. Kotrel, M.P. Rosynek, J.H. Lunsford, Quantificati [32] A.K. Aboul-Gheit, M.S. El-Masry, A.E. Awadallah, Oxygen free conversion of natural gas to useful hydrocarbons and hydrogen over monometallic Mo and bimetallic Mo-Fe, Mo-Co or Mo-Ni/HZSM-5 catalysts prepared by mechanical mixing, Fuel Process. Technol. 102(2012) 24-29. [33] T.L. Liu, J.P. Cao, X.Y. Zhao, J.X. Wang, X.Y. Ren, X. Fan, Y.P. Zhao, X.Y. Wei, In situ upgrading of Shengli lignite pyrolysis vapors over metal-loaded HZSM-5 catalyst, Fuel Process. Technol. 160(2017) 19-26. [34] J. Dong, Z. Cheng, F. Li, PAHs emission from the pyrolysis of Western Chinese coal, J. Anal. Appl. Pyrolysis 104(2013) 502-507. [35] T.M.C. Pereira, G. Vanini, E.C.S. Oliveira, F.M.R. Cardoso, F.P. Fleming, A.C. Neto, V. LacerdaJr, E.V.R. CastroJr, B.G. VazJr, W. RomãoJr, An evaluation of the aromaticity of asphaltenes using atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry-APPI(±) FTICR MS, Fuel 118(2014) 348-357. [36] H.J. Guzmán, F. Isquierdo, L. Carbognani, G. Vitale, C.E. Scott, P. Pereira-Almao, X-ray photoelectron spectroscopy analysis of hydrotreated athabasca asphaltenes, Energy Fuels 31(10) (2017) 10706-10717. [37] M. Sun, Y.B. Li, S. Sha, J.W. Gao, R.C. Wang, Y.J. Zhang, Q.Q. Hao, H.Y. Chen, Q.X. Yao, X.X. Ma, The composition and structure of n-hexane insoluble-hot benzene soluble fraction and hot benzene insoluble fraction from low temperature coal tar, Fuel 262(2020) 116511. [38] X.J. Kong, Y.H. Bai, L.J. Yan, F. Li, Catalytic upgrading of coal gaseous tar over Ytype zeolites, Fuel 180(2016) 205-210. [39] H. Kondoh, K. Tanaka, Y. Nakasaka, T. Tago, T. Masuda, Catalytic cracking of heavy oil over TiO2-ZrO2 catalysts under superheated steam conditions, Fuel 167(2016) 288-294. [40] X.Y. Ren, J.P. Cao, X.Y. Zhao, Z. Yang, S.N. Liu, X.Y. Wei, Enhancement of aromatic products from catalytic fast pyrolysis of lignite over hierarchical HZSM-5 by piperidine-assisted desilication, ACS Sustain. Chem. Eng. 6(2) (2018) 1792-1802. [41] E. Furimsky, Catalytic hydrodeoxygenation, Appl. Catal. A:Gen. 199(2) (2000) 147-190. [42] Y.J. Liu, L.J. Yan, Y.H. Bai, F. Li, Catalytic upgrading of volatile from coal pyrolysis over faujasite zeolites, J. Anal. Appl. Pyrolysis 132(2018) 184-189. [43] G.L. Li, L.J. Yan, R.F. Zhao, F. Li, Improving aromatic hydrocarbons yield from coal pyrolysis volatile products over HZSM-5 and Mo-modified HZSM-5, Fuel 130(2014) 154-159. [44] S. Meesuk, J.P. Cao, K. Sato, Y. Ogawa, T. Takarada, Fast pyrolysis of rice husk in a fluidized bed:Effects of the gas atmosphere and catalyst on bio-oil with a relatively low content of oxygen, Energy Fuels 25(9) (2011) 4113-4121. [45] A.T. To, D.E. Resasco, Role of a phenolic pool in the conversion of m-cresol to aromatics over HY and HZSM-5 zeolites, Appl. Catal. A:Gen. 487(2014) 62-71. [46] S.T. Oyama, X. Wang, Y.K. Lee, W.J. Chun, Active phase of Ni2P/SiO2 in hydroprocessing reactions, J. Catal. 221(2) (2004) 263-273. [47] Y.T. Cheng, G.W. Huber, Chemistry of furan conversion into aromatics and olefins over HZSM-5:A model biomass conversion reaction, ACS Catal. 1(6) (2011) 611-628. [48] Q. Lu, H.Q. Guo, M.X. Zhou, Z.X. Zhang, M.S. Cui, Y.Y. Zhang, Y.P. Yang, L.B. Zhang, Monocyclic aromatic hydrocarbons production from catalytic cracking of pine wood-derived pyrolytic vapors over Ce-Mo2N/HZSM-5 catalyst, Sci. Total. Environ. 634(2018) 141-149.on of acid sites in H-ZSM-5, H-b, and H-Y zeolites, J. Catal. 182(1) (1999) 278-281. |