Chinese Journal of Chemical Engineering ›› 2023, Vol. 53 ›› Issue (1): 374-380.DOI: 10.1016/j.cjche.2022.01.023
Previous Articles Next Articles
Najma Kamali1, Jahan B. Ghasemi1, Ghodsi Mohammadi Ziarani2, Sahar Moradian1, Alireza Badiei1
Received:
2021-10-16
Revised:
2021-12-08
Online:
2023-04-08
Published:
2023-01-28
Contact:
Alireza Badiei,E-mail:abadiei@ut.ac.ir
Supported by:
Najma Kamali1, Jahan B. Ghasemi1, Ghodsi Mohammadi Ziarani2, Sahar Moradian1, Alireza Badiei1
通讯作者:
Alireza Badiei,E-mail:abadiei@ut.ac.ir
基金资助:
Najma Kamali, Jahan B. Ghasemi, Ghodsi Mohammadi Ziarani, Sahar Moradian, Alireza Badiei. Design, synthesis, and nanoengineered modification of spherical graphene surface by layered double hydroxide (LDH) for removal of As(III) from aqueous solutions[J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 374-380.
Najma Kamali, Jahan B. Ghasemi, Ghodsi Mohammadi Ziarani, Sahar Moradian, Alireza Badiei. Design, synthesis, and nanoengineered modification of spherical graphene surface by layered double hydroxide (LDH) for removal of As(III) from aqueous solutions[J]. 中国化学工程学报, 2023, 53(1): 374-380.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.01.023
[1] M.X. Su, H.Y. Wang, C.S. Sun, C.Y. Yuan, L. Chao, W. Qiang, Acute toxicity of intratracheal arsenic trioxide instillation in rat lungs, J. Appl. Toxicol. 39 (11) (2019) 1578–1585.https://pubmed.ncbi.nlm.nih.gov/31319442/ [2] S.U. Dani, G.F. Walter, Chronic arsenic intoxication diagnostic score (CAsIDS), J. Appl. Toxicol. 38 (1) (2018) 122–144.https://pubmed.ncbi.nlm.nih.gov/28857213/ [3] C.B. Wang, H.M. Liu, Y. Zhang, C. Zou, E.J. Anthony, Review of arsenic behavior during coal combustion: Volatilization, transformation, emission and removal technologies, Prog. Energy Combust. Sci. 68 (2018) 1–28. 10.1016/j.pecs.2018.04.001 [4] X. Xie, C. Chen, N. Zhang, Z.R. Tang, J. Jiang, Y.J. Xu, Microstructure and surface control of MXene films for water purification“>, Nat. Sustain. 2”> (9“>) (2019) 856”>–862“>.https://www.nature.com/articles/s41893-019-0373-4%22%3e [5] C.L. Hou, T.F. Jiao, R.R. Xing, Y. Chen, J.X. Zhou, L.X. Zhang, Preparation of TiO2 nanoparticles modified electrospun nanocomposite membranes toward efficient dye degradation for wastewater treatment, J. Taiwan Inst. Chem. Eng. 78 (2017) 118–126.10.1016/j.jtice.2017.04.033 [6] N. Najib, C. Christodoulatos, Removal of arsenic using functionalized cellulose nanofibrils from aqueous solutions, J. Hazard. Mater. 367 (2019) 256–266.https://pubmed.ncbi.nlm.nih.gov/30594725/ [7] N.R. Nicomel, K. Leus, K. Folens, P. van der Voort, G. du Laing, Technologies for arsenic removal from water: Current status and future perspectives, Int J Environ Res Public Health 13 (1) (2015) ijerph13010062.https://pubmed.ncbi.nlm.nih.gov/26703687/ [8] Y.R. He, Y.P. Tang, D.C. Ma, T.S. Chung, UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal, J. Membr. Sci. 541 (2017) 262–270.10.1016/j.memsci.2017.06.061 [9] Kabay N, Ipek IY, Yilmaz PK, Samatya S, Bryjak M, Yoshizuka K, et al. Removal of boron and arsenic from geothermal water by ion-exchange. Geothermal Water Management: CRC Press,Boca Raton (2018)135-155. [10] E.B. da Silva, L.M. de Oliveira, A.C. Wilkie, Y. Liu, L.Q. Ma, Arsenic removal from As-hyperaccumulator Pteris vittata biomass: Coupling extraction with precipitation, Chemosphere 193 (2018) 288–294.https://pubmed.ncbi.nlm.nih.gov/29145089/ [11] R.Z. He, Z.Y. Peng, H.H. Lyu, H. Huang, Q. Nan, J.C. Tang, Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal, Sci. Total Environ. 612 (2018) 1177–1186.https://pubmed.ncbi.nlm.nih.gov/28892862/ [12] L.K. Wu, H. Wu, H.B. Zhang, H.Z. Cao, G.Y. Hou, Y.P. Tang, G.Q. Zheng, Graphene oxide/CuFe2O4 foam as an efficient absorbent for arsenic removal from water, Chem. Eng. J. 334 (2018) 1808–1819.10.1016/j.cej.2017.11.096 [13] N.Y. Zhu, J. Qiao, Y.F. Ye, T.M. Yan, Synthesis of mesoporous bismuth-impregnated aluminum oxide for arsenic removal: Adsorption mechanism study and application to a lab-scale column, J. Environ. Manage. 211 (2018) 73–82.https://pubmed.ncbi.nlm.nih.gov/29408085/ [14] S. Moradian, H. Dezhampanah, J.B. Ghasemi, H. Behnejad, Spectrophotometric-chemometrics study of the effect of solvent composition and temperature on the spectral shape and shift of copper and nickel phthalocyanines in different aqueous-nonaqueous mixed solvents, Spectrochimica Acta A Mol. Biomol. Spectrosc. 227 (2020) 117621.10.1016/j.saa.2019.117621 [15] S. Moradian, J.B. Ghasemi, H. Dezhampanah, Chemometrics-spectroscopic study of the effect of temperature and pre-micellar to post-micellar forms of various surfactants on the dimerization of nickel and copper phthalocyanines, J. Mol. Liq. 300 (2020) 112350.10.1016/j.molliq.2019.112350 [16] L.P. Liang, F.F. Xi, W.S. Tan, X. Meng, B.W. Hu, X.K. Wang, Review of organic and inorganic pollutants removal by biochar and biochar-based composites, Biochar 3 (3) (2021) 255–281.10.1007/s42773-021-00101-6 [17] X.M. Dou, G.C. Wang, M.Q. Zhu, F.D. Liu, W. Li, D. Mohan, C.U. Pittman Jr, Identification of Fe and Zr oxide phases in an iron-zirconium binary oxide and arsenate complexes adsorbed onto their surfaces, J. Hazard. Mater. 353 (2018) 340–347.https://pubmed.ncbi.nlm.nih.gov/29680692/ [18] J.C. Zhang, Y.N. Chen, W. Zhao, Y.H. Li, Arsenic removal from aqueous solutions by diethylenetriamine-functionalized resin: Isotherm, kinetics, selectivity and mechanism, R. Soc. Open Sci. 5 (9) (2018) 181013.https://pubmed.ncbi.nlm.nih.gov/30839648/ [19] I. Ali, Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: Batch and column operations, J. Mol. Liq. 271 (2018) 677–685.10.1016/j.molliq.2018.09.021 [20] C.L. Fausey, I. Zucker, E. Shaulsky, J.B. Zimmerman, M. Elimelech, Removal of arsenic with reduced graphene oxide-TiO2-enabled nanofibrous mats, Chem. Eng. J. 375 (2019) 122040.10.1016/j.cej.2019.122040 [21] J. Xu, Z. Cao, Y.L. Zhang, Z.L. Yuan, Z.M. Lou, X.H. Xu, X.K. Wang, A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism, Chemosphere 195 (2018) 351–364.https://pubmed.ncbi.nlm.nih.gov/29272803/ [22] A.M. Nasir, P.S. Goh, A.F. Ismail, Highly adsorptive polysulfone/hydrous iron-nickel-manganese (PSF/HINM) nanocomposite hollow fiber membrane for synergistic arsenic removal, Sep. Purif. Technol. 213 (2019) 162–175.10.1016/j.seppur.2018.12.040 [23] S. Zhang, J.Q. Wang, Y. Zhang, J.Z. Ma, L. Huang, S.J. Yu, L. Chen, G. Song, M.Q. Qiu, X.X. Wang, Applications of water-stable metal-organic frameworks in the removal of water pollutants: A review, Environ Pollut 291 (2021) 118076.https://pubmed.ncbi.nlm.nih.gov/34534824/ [24] S.J. Yu, H.W. Pang, S.Y. Huang, H. Tang, S.Q. Wang, M.Q. Qiu, Z.S. Chen, H. Yang, G. Song, D. Fu, B.W. Hu, X.X. Wang, Recent advances in metal-organic framework membranes for water treatment: A review, Sci. Total Environ. 800 (2021) 149662.https://pubmed.ncbi.nlm.nih.gov/34426309/ [25] V.H. Nguyen, S. Ali Delbari, M. Mousavi, A. Sabahi Namini, J.B. Ghasemi, Q. van le, M. Shahedi Asl, M. Mohammadi, M. Shokouhimehr, G-C3N4-nanosheet/ZnCr2O4 S-scheme heterojunction photocatalyst with enhanced visible-light photocatalytic activity for degradation of phenol and tetracycline, Sep. Purif. Technol. (2021) 118511.10.1016/j.seppur.2021.118511 [26] J.S. He, F. Ni, A.N. Cui, X.L. Chen, S.H. Deng, F. Shen, C.R. Huang, G. Yang, C. Song, J. Zhang, D. Tian, L.L. Long, Y. Zhu, L. Luo, New insight into adsorption and co-adsorption of arsenic and tetracycline using a Y-immobilized graphene oxide-alginate hydrogel: Adsorption behaviours and mechanisms, Sci. Total Environ. 701 (2020) 134363.https://pubmed.ncbi.nlm.nih.gov/31706211/ [27] A.I.A. Sherlala, A.A.A. Raman, M.M. Bello, Synthesis and characterization of magnetic graphene oxide for arsenic removal from aqueous solution, Environ. Technol. 40 (12) (2019) 1508–1516.https://pubmed.ncbi.nlm.nih.gov/29300679/ [28] S.I. Siddiqui, R. Ravi, S.A. Chaudhry, Removal of Arsenic from Water Using Graphene Oxide Nano-hybridsNew Gener. Mater. Graphene Appl. Water Technol. (2019): 221–237.10.1007/978-3-319-75484-0_9 [29] A. Ghazitabar, M. Naderi, D. Fatmehsari Haghshenas, M. Rezaei, Synthesis of N-doped graphene aerogel/Co3O4/ZnO ternary nanocomposite via mild reduction method with an emphasis on its electrochemical characteristics, J. Alloys Compd. 794 (2019) 625–633.10.1016/j.jallcom.2019.04.188 [30] F. Zhang, Y.H. Li, J.Y. Li, Z.R. Tang, Y.J. Xu, 3D graphene-based gel photocatalysts for environmental pollutants degradation, Environ. Pollut. 253 (2019) 365–376.https://pubmed.ncbi.nlm.nih.gov/31325881/ [31] H. Wang, X. Mi, Y. Li, S. Zhan, 3D graphene-based macrostructures for water treatment, Adv. Mater. Deerfield Beach Fla 32 (3) (2020) e1806843.https://pubmed.ncbi.nlm.nih.gov/31074916/ [32] N. Yousefi, X.L. Lu, M. Elimelech, N. Tufenkji, Environmental performance of graphene-based 3D macrostructures, Nat. Nanotechnol. 14 (2) (2019) 107–119.https://pubmed.ncbi.nlm.nih.gov/30617310/ [33] W.J. Ye, X.Y. Li, J.W. Luo, X.Y. Wang, R.C. Sun, Lignin as a green reductant and morphology directing agent in the fabrication of 3D graphene-based composites for high-performance supercapacitors, Ind. Crops Prod. 109 (2017) 410–419.10.1016/j.indcrop.2017.08.047 [34] Q.H. Wu, G.Y. Zhao, C. Feng, C. Wang, Z. Wang, Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples, J. Chromatogr. A 1218 (44) (2011) 7936–7942.https://pubmed.ncbi.nlm.nih.gov/21962496/ [35] X.P. Zhang, D. Liu, L. Yang, L.M. Zhou, T.Y. You, Self-assembled three-dimensional graphene-based materials for dye adsorption and catalysis, J. Mater. Chem. A 3 (18) (2015) 10031–10037.https://doi.org/10.1039/c5ta00355e [36] S.H. Park, H.K. Kim, S.B. Yoon, C.W. Lee, D. Ahn, S.I. Lee, K.C. Roh, K.B. Kim, Spray-assisted deep-frying process for the in situ spherical assembly of graphene for energy-storage devices, Chem. Mater. 27 (2) (2015) 457–465.10.1021/cm5034244 [37] H. Wang, J.Y. Xie, H. Almkhelfe, V. Zane, R. Ebini, C.M. Sorensen, P.B. Amama, Microgel-assisted assembly of hierarchical porous reduced graphene oxide for high-performance lithium-ion battery anodes, J. Mater. Chem. A 5 (44) (2017) 23228–23237.https://doi.org/10.1039/c7ta07183c [38] N. Baig, T.A. Saleh, Electrodes modified with 3D graphene composites: A review on methods for preparation, properties and sensing applications, Mikrochim. Acta 185 (6) (2018) 283.https://pubmed.ncbi.nlm.nih.gov/29736826/ [39] H.T. Yu, G.X. Xin, X. Ge, C.K. Bulin, R.H. Li, R.G. Xing, B.W. Zhang, Porous graphene-polyaniline nanoarrays composite with enhanced interface bonding and electrochemical performance, Compos. Sci. Technol. 154 (2018) 76–84.10.1016/j.compscitech.2017.11.010 [40] F. Ghasemi, S. Kimiagar, M. Shahbazi, H. Vojoudi, Removal enhancement of basic blue 41 by rgo–tio2 nanocomposite synthesized using pulsed laser, Surf. Rev. Lett. 25 (1) (2018) 1850041.https://doi.org/10.1142/s0218625x18500415 [41] M. Nazarian-Samani, H.K. Kim, S.H. Park, H.C. Youn, D. Mhamane, S.W. Lee, M.S. Kim, J.H. Jeong, S. Haghighat-Shishavan, K.C. Roh, S.F. Kashani-Bozorg, K.B. Kim, Three-dimensional graphene-based spheres and crumpled balls: Micro- and nano-structures, synthesis strategies, properties and applications, RSC Adv. 6 (56) (2016) 50941–50967.https://doi.org/10.1039/c6ra07485e [42] M. Pedrosa, E.S. da Silva, L.M. Pastrana-Martínez, G. Drazic, P. Falaras, J.L. Faria, J.L. Figueiredo, A. Silva, Hummers' and brodie's graphene oxides as photocatalysts for phenol degradation, J. Colloid Interface Sci. 567 (2020) 243–255.https://pubmed.ncbi.nlm.nih.gov/32062085/ [43] K.Y. Goud, A. Hayat, G. Catanante, S. M, K.V. Gobi, J.L. Marty, An electrochemical aptasensor based on functionalized graphene oxide assisted electrocatalytic signal amplification of methylene blue for aflatoxin B1 detection, Electrochimica Acta 244 (2017) 96–103.10.1016/j.electacta.2017.05.089 [44] Z.Z. Wang, X.Y. Li, Synthesis of CoAl-layered double hydroxide/graphene oxide nanohybrid and its reinforcing effect in phenolic foams, High Perform. Polym. 30 (6) (2018) 688–698.https://doi.org/10.1177/0954008317716976 [45] E. Boorboor Azimi, A. Badiei, J.B. Ghasemi, Efficient removal of malachite green from wastewater by using boron-doped mesoporous carbon nitride, Appl. Surf. Sci. 469 (2019) 236–245.10.1016/j.apsusc.2018.11.017 [46] N. Kanani, M. Bayat, F. Shemirani, J.B. Ghasemi, Z. Bahrami, A. Badiei, Synthesis of magnetically modified mesoporous nanoparticles and their application in simultaneous determination of Pb(II), Cd(II) and Cu(II), Res. Chem. Intermed. 44 (3) (2018) 1689–1709.10.1007/s11164-017-3192-0 [47] A. Banitalebi Dehkordi, A. Ziarati, J.B. Ghasemi, A. Badiei, Preparation of hierarchical g-C3N4@TiO2 hollow spheres for enhanced visible-light induced catalytic CO2 reduction, Sol. Energy 205 (2020) 465–473.10.1016/j.solener.2020.05.071 [48] H. Vojoudi, J.B. Ghasemi, A. Hajihosseinloo, B. Bastan, A. Badiei, One-pot synthesis of hematite-alumina hollow sphere composite by ultrasonic spray pyrolysis technique with high adsorption capacity toward PAHs, Adv. Powder Technol. 32 (4) (2021) 1060–1069.10.1016/j.apt.2021.02.015 [49] F. Mohajer, G. Mohammadi Ziarani, A. Badiei, J.B. Ghasemi, SBA-Pr-Imine-Furan as an environmental adsorbent of Pd(II) in aqueous solutions, Environ. Chall. 3 (2021) 100032.10.1016/j.envc.2021.100032 [50] L. Arjomandi-Behzad, M.K. Rofouei, A. Badiei, J.B. Ghasemi, Simultaneous removal of crystal violet and methyl green in water samples by functionalised SBA-15, Int. J. Environ. Anal. Chem. (2020) 1–17.10.1080/03067319.2020.1804895 [51] F.L. Liu, S. Hua, C. Wang, B.W. Hu, Insight into the performance and mechanism of persimmon tannin functionalized waste paper for U(VI) and Cr(VI) removal, Chemosphere 287 (2022) 132199.10.1016/j.chemosphere.2021.132199 [52] F.L. Liu, S. Hua, C. Wang, M.Q. Qiu, L.M. Jin, B.W. Hu, Adsorption and reduction of Cr(VI) from aqueous solution using cost-effective caffeic acid functionalized corn starch, Chemosphere 279 (2021) 130539.10.1016/j.chemosphere.2021.130539 [53] Y.L. Zhu, X.Y. He, J.L. Xu, Z. Fu, S.Y. Wu, J. Ni, B.W. Hu, Insight into efficient removal of Cr(VI) by magnetite immobilized with Lysinibacillus sp. JLT12: Mechanism and performance, Chemosphere 262 (2021) 127901.https://pubmed.ncbi.nlm.nih.gov/32805660/ [54] Iron oxide coated multiwall carbon nanotubes for the removal of arsenic from water [55] F.Z. Mou, J.G. Guan, H.R. Ma, L.L. Xu, W.D. Shi, Magnetic iron oxide chestnutlike hierarchical nanostructures: Preparation and their excellent arsenic removal capabilities, ACS Appl. Mater. Interfaces 4 (8) (2012) 3987–3993.https://pubmed.ncbi.nlm.nih.gov/22796758/ [56] B. Chen, Z.L. Zhu, Y.W. Guo, Y.L. Qiu, J.F. Zhao, Facile synthesis of mesoporous Ce-Fe bimetal oxide and its enhanced adsorption of arsenate from aqueous solutions, J. Colloid Interface Sci. 398 (2013) 142–151.https://pubmed.ncbi.nlm.nih.gov/23473573/ [57] C. Feng, Removal of Arsenic from Alkaline Process Water of Gold Cyanidation by Use of Functionalised Magnetic Adsorbents, Ph.D Thesis, Curtin University, Perth, 2017. [58] Z.P. Wen, C.M. Dai, Y. Zhu, Y.L. Zhang, Arsenate removal from aqueous solutions using magnetic mesoporous iron manganese bimetal oxides, RSC Adv. 5 (6) (2015) 4058–4068.https://doi.org/10.1039/c4ra09746g [59] P. Suresh Kumar, R.Q. Flores, C. Sjöstedt, L. Önnby, Arsenic adsorption by iron-aluminium hydroxide coated onto macroporous supports: Insights from X-ray absorption spectroscopy and comparison with granular ferric hydroxides, J. Hazard. Mater. 302 (2016) 166–174. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[3] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[4] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[5] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[6] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[7] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[8] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[9] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[10] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[11] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
[12] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 319-328. |
[13] | Hany M. Abd El-Lateef, Mai M. Khalaf, K. Shalabi, Antar A. Abdelhamid. Multicomponent synthesis and designing of tetrasubstituted imidazole compounds catalyzed via ionic-liquid for acid steel corrosion protection: Experimental exploration and theoretical calculations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 304-319. |
[14] | Zhongqi Ren, Jie Wang, Hewei Zhang, Fan Zhang, Shichao Tian, Zhiyong Zhou. Adsorption of rubidium ion from aqueous solution by surface ion imprinted materials [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 1-10. |
[15] | Mengge Shang, Jing Zhang, Jinqiang Sun, Shimo Yu, Feng Hua, Xiaoxu Xuan, Xun Sun, Serguei Filatov, Xibin Yi. Amine-functionalized mesoporous UiO-66 aerogel for CO2 adsorption [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 36-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||