[1] G. Gow, Lubricating grease, In: Chemistry and Technology of Lubricants, Springer, New York, 2010, pp. 411–432. [2] M. Paszkowski, Assessment of the effect of temperature, shear rate and thickener content on the thixotropy of lithium lubricating greases, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 227 (3) (2013) 209–219. [3] M. Paszkowski, S. Olsztyńska-Janus, I. Wilk, Studies of the kinetics of lithium grease microstructure regeneration by means of dynamic oscillatory rheological tests and FTIR–ATR spectroscopy, Tribol. Lett. 56 (1) (2014) 107–117. [4] J.B. Pan, Y.H. Cheng, J.Y. Yang, Effect of heat treatment on the lubricating properties of lithium lubricating grease, RSC Adv. 5 (72) (2015) 58686–58693. [5] R.M. Mortier, M.F. Fox, S.T. Orszulik, Chemistry and Technology of Lubricants, Springer, Dordrecht, 2010. [6] R. Kozdrach, The influence of base oil type on the rheological properties of ecological lubricating greases, Nafta-Gaz 77 (2) (2021) 127–135. [7] Y. Porfiryev, S. Shuvalov, P. Popov, D. Kolybelsky, D. Petrova, E. Ivanov, B. Tonkonogov, V. Vinokurov, Effect of base oil nature on the operational properties of low-temperature greases, ACS Omega 5 (21) (2020) 11946–11954. [8] M.R. Cai, R.S. Guo, F. Zhou, W.M. Liu, Lubricating a bright future: Lubrication contribution to energy saving and low carbon emission, Sci. China Technol. Sci. 56 (12) (2013) 2888–2913. [9] J.B. Gajewski, M.J. Głogowski, Anti-wear additive content in fully synthetic PAO and PAG base oils and its effect on electrostatic and tribological phenomena in a rotating shaft–oil–lip seal system, J. Phys.: Conf. Ser. 418 (2013) 012045. [10] J.E. Martín-Alfonso, A. Romero, C. Valencia, J.M. Franco, Formulation and processing of virgin and recycled polyolefin/oil blends for the development of lubricating greases, J. Ind. Eng. Chem. 19 (2) (2013) 580–588. [11] M.A. Delgado, C. Valencia, M.C. Sánchez, J.M. Franco, C. Gallegos, Thermorheological behaviour of a lithium lubricating grease, Tribol. Lett. 23 (1) (2006) 47–54. [12] C. Wu, K. Yang, Y. Chen, J. Ni, L.D. Yao, X.L. Li, Investigation of friction and vibration performance of lithium complex grease containing nano-particles on rolling bearing, Tribol. Int. 155 (2021) 106761. [13] Q. He, Z.G. Wang, A.L. Li, Y.C. Guo, S.F. Liu, Tribological properties of nanometer Al2O3 and nanometer ZnO as additives in lithium-based grease, Ind. Lubr. Tribol. 70 (6) (2018) 953–960. [14] J. Zhang, J.T. Li, A.L. Wang, B.J. Edwards, H.B. Yin, Z.Z. Li, Y. Ding, Improvement of the tribological properties of a lithium-based grease by addition of graphene, J. Nanosci. Nanotechnol. 18 (10) (2018) 7163–7169. [15] A.L. Wang, J.T. Li, J. Zhang, H.B. Yin, Preparation of different-sized copper nanoparticles by reducing copper hydroxide and application in lithium-based grease, J. Nanosci. Nanotechnol. 20 (4) (2020) 2372–2381. [16] K. Akhtar, A. Hussain, M. Gul, H. Khalid, S. Yousaf Zai, Facile synthesis of uniform calcite microcubes and their enhanced tribological performance in lithium-based commercial grease, J. Tribol. 141 (5) (2019) 052002. [17] X.Q. Fan, W. Li, H. Li, M.H. Zhu, Y.Q. Xia, J.J. Wang, Probing the effect of thickener on tribological properties of lubricating greases, Tribol. Int. 118 (2018) 128–139. [18] M.A. Delgado, C. Valencia, M.C. Sánchez, J.M. Franco, C. Gallegos, Influence of soap concentration and oil viscosity on the rheology and microstructure of lubricating greases, Ind. Eng. Chem. Res. 45 (6) (2006) 1902–1910. [19] I.V. Lend'el, Y.L. Ishchuk, G.I. Cherednichenko, V.V. Sinitsyn, Dispersion media for lubricating greases, Chem. Technol. Fuels Oils 16 (5) (1980) 308–311. [20] D. Muller, C. Matta, R. Thijssen, M.N. bin Yusof, M.C.P. van Eijk, S. Chatra, Novel polymer grease microstructure and its proposed lubrication mechanism in rolling/sliding contacts, Tribol. Int. 110 (2017) 278–290. [21] H. Hao, Z.W. Liu, F.Q. Zhao, Y. Geng, J. Sarkis, Material flow analysis of lithium in China, Resour. Policy 51 (2017) 100–106. [22] N. Xu, X.B. Wang, R. Ma, W.M. Li, M. Zhang, Insights into the rheological behaviors and tribological performances of lubricating grease: Entangled structure of a fiber thickener and functional groups of a base oil, New J. Chem. 42 (2) (2018) 1484–1491. [23] T. Yang, F.J. Wang, J.P. Huang, S.D. Ling, S.L. Liu, A.G. Zhang, Y.D. Wang, J.H. Xu, Efficient continuous-flow synthesis of long-chain alkylated naphthalene catalyzed by ionic liquids in a microreaction system, React. Chem. Eng. 6 (10) (2021) 1950–1960. [24] C. Chen, Q. Tang, H. Xu, L. Liu, M.X. Tang, X.K. Li, J.X. Dong, Alkylation of naphthalene with n-butene catalyzed by liquid coordination complexes and its lubricating properties, Chin. J. Chem. Eng. 39 (2021) 306–313. [25] L. Li, X.R. Zhao, C. Chen, H. Xu, L. Liu, J.X. Dong, Highly selective synthesis of polyalkylated naphthalenes catalyzed by ionic liquids and their tribological properties as lubricant base oil, ChemistrySelect 4 (18) (2019) 5284–5290. [26] S. Mazzo-Skalski, Alkylated naphthalene basestocks advance high-performance lubricants, Tribol. Lubr. Technol. 65 (2009) 38–40. [27] T. Honda, M. Kiyozumi, S. Kojima, Alkylnaphthalene. XI. Pulmonary toxicity of naphthalene, 2-methylnaphthalene, and isopropylnaphthalenes in mice, Chem. Pharm. Bull. (Tokyo) 38 (11) (1990) 3130–3135. [28] H. Höke, R. Zellerhoff, Metabolism and toxicity of diisopropylnaphthalene as compared to naphthalene and monoalkyl naphthalenes: A minireview, Toxicology 126 (1) (1998) 1–7. [29] H.J. Kang, Y. Jung, J.H. Kwon, Changes in ecotoxicity of naphthalene and alkylated naphthalenes during photodegradation in water, Chemosphere 222 (2019) 656–664. [30] L. Liu, C. Chen, Q. Tang, J.X. Dong, Preparation method and application of alkyl tetrahydronaphthalene, CN Pat., 112694379A (2021). [31] J. Li, H. Yin, C. Zhai, A. Wang, L. Shen, Synthesis of polyphenylmethylsiloxanes and their enhancement on tribological properties of titanium complex grease, J. Appl. Polym. Sci. 136 (10) (2019) 47168. [32] J. Zhang, A.L. Wang, H.B. Yin, Preparation of graphite nanosheets in different solvents by sand milling and their enhancement on tribological properties of lithium-based grease, Chin. J. Chem. Eng. 28 (4) (2020) 1177–1186. [33] J.T. Li, C. Zhai, H.B. Yin, A.L. Wang, L.Q. Shen, Impact of polydimethylsiloxanes on physicochemical and tribological properties of naphthenic mineral oil (KN 4010)-based titanium complex grease, Chin. J. Chem. Eng. 27 (4) (2019) 944–948. [34] C.J. Donahue, Lubricating grease: A chemical primer, J. Chem. Educ. 83 (6) (2006) 862. [35] G.L. Ren, P.F. Zhang, X.Y. Ye, W. Li, X.Q. Fan, M.H. Zhu, Comparative study on corrosion resistance and lubrication function of lithium complex grease and polyurea grease, Friction 9 (1) (2021) 75–91. [36] H. Yan, P.Y. Li, C. Duan, X.M. Dong, Studies with rheological behavior of composite lithium-based magnetorheological grease, Metals 11 (11) (2021) 1826. [37] Z.Y. Wang, Y.Q. Xia, Z.L. Liu, The rheological and tribological properties of calcium sulfonate complex greases, Friction 3 (1) (2015) 28–35. [38] Q.L. Yu, D.M. Li, M.R. Cai, F. Zhou, W.M. Liu, Supramolecular gel lubricants based on amino acid derivative gelators, Tribol. Lett. 61 (2) (2016) 16. [39] B. Zakani, M. Ansari, D. Grecov, Dynamic rheological properties of a fumed silica grease, Rheol. Acta 57 (1) (2018) 83–94. [40] J.E. Martín-Alfonso, M.J. Martín-Alfonso, C. Valencia, M.T. Cuberes, Rheological and tribological approaches as a tool for the development of sustainable lubricating greases based on nano-montmorillonite and castor oil, Friction 9 (2) (2021) 415–428. [41] J.E. Martín-Alfonso, M.J. Martín-Alfonso, J.M. Franco, Tunable rheological-tribological performance of “green” gel-like dispersions based on sepiolite and castor oil for lubricant applications, Appl. Clay Sci. 192 (2020) 105632. [42] M.R. Cai, Y.M. Liang, F. Zhou, W.M. Liu, Functional ionic gels formed by supramolecular assembly of a novel low molecular weight anticorrosive/antioxidative gelator, J. Mater. Chem. 21 (35) (2011) 13399–13405. [43] L.K. Han, W.X. Niu, X.R. Zhao, H. Xu, J.X. Dong, Synthesis of layered octadecyltrimethylammonium-templated aluminosilicate and its use as a thickening agent for lubricating grease, Tribol. Lett. 70 (1) (2022) 17. [44] N. de Laurentis, P. Cann, P.M. Lugt, A. Kadiric, The influence of base oil properties on the friction behaviour of lithium greases in rolling/sliding concentrated contacts, Tribol. Lett. 65 (4) (2017) 128. [45] E.H. Zhang, W.M. Li, G.Q. Zhao, Z. Wang, X.B. Wang, A study on microstructure, friction and rheology of four lithium greases formulated with four different base oils, Tribol. Lett. 69 (3) (2021) 98. [46] M.A. Delgado, M.C. Sánchez, C. Valencia, J.M. Franco, C. Gallegos, Relationship among microstructure, rheology and processing of a lithium lubricating grease, Chem. Eng. Res. Des. 83 (9) (2005) 1085–1092. [47] B. Lin, I. Rustamov, L. Zhang, J.Q. Luo, X.N. Wan, Graphene-reinforced lithium grease for antifriction and antiwear, ACS Appl. Nano Mater. 3 (10) (2020) 10508–10521. [48] A.S.M.A. Haseeb, S.Y. Sia, M.A. Fazal, H.H. Masjuki, Effect of temperature on tribological properties of palm biodiesel, Energy 35 (3) (2010) 1460–1464. |