[1] M. Rabnawaz, I. Wyman, R. Auras, S. Cheng, A roadmap towards green packaging:The current status and future outlook for polyesters in the packaging industry, Green Chem. 19(20)(2017)4737-4753. [2] K.J. Yao, C.B. Tang, Controlled polymerization of next-generation renewable monomers and beyond, Macromolecules 46(5)(2013)1689-1712. [3] M.J.D. Mahboub, J.L. Dubois, F. Cavani, M. Rostamizadeh, G.S. Patience, Catalysis for the synthesis of methacrylic acid and methyl methacrylate, Chem. Soc. Rev. 47(20)(2018)7703-7738. [4] K. Nagai, New developments in the production of methyl methacrylate, Appl. Catal. A 221(1-2)(2001)367-377. [5] C.A. Xue, M. Liu, X.W. Guo, E.P. Hudson, L.J. Chen, F.W. Bai, F.F. Liu, S.T. Yang, Bridging chemical-and bio-catalysis:High-value liquid transportation fuel production from renewable agricultural residues, Green Chem. 19(3)(2017)660-669. [6] D.W. Johnson, G.R. Eastham, M. Poliakoff, T.A. Huddle, Process for the production of (meth) acrylic acid and derivatives and polymers produced therefrom, US Pat. 9, 980, 103, 2015. [7] M. Carlsson, C. Habenicht, L.C. Kam, M.J. Antal, N.Y. Bian, R.J. Cunningham, M. Jones, Study of the sequential conversion of citric to itaconic to methacrylic acid in near-critical and supercritical water, Ind. Eng. Chem. Res. 33(8)(1994)1989-1996. [8] J. Le Notre, S.C.M. Witte-van Dijk, J. van Haveren, E.L. Scott, J.P.M. Sanders,^Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts, ChemSusChem 7(9)(2014)2712-2720. [9] M. Pirmoradi, J.R. Kastner, Synthesis of methacrylic acid by catalytic decarboxylation and dehydration of carboxylic acids using a solid base and subcritical water, ACS Sustain. Chem. Eng. 5(2)(2017)1517-1527. [10] J.C. Lansing, R.E. Murray, B.R. Moser, Biobased methacrylic acid via selective catalytic decarboxylation of itaconic acid, ACS Sustain. Chem. Eng. 5(4)(2017)3132-3140. [11] A. Bohre, U. Novak, M. Grilc, B. Likozar, Synthesis of bio-based methacrylic acid from biomass-derived itaconic acid over Barium hexaaluminate catalyst by selective decarboxylation reaction, Mol. Catal. 476(2019)110520. [12] A. Bohre, B. Hocevar, M. Grilc, B. Likozar, Selective catalytic decarboxylation of biomass-derived carboxylic acids to bio-based methacrylic acid over hexaaluminate catalysts, Appl. Catal. B 256(2019)117889. [13] A. Bohre, M.A. Ali, M. Ocepek, M. Grilc, J. Zabret, B. Likozar, Copolymerization of biomass-derived carboxylic acids for biobased acrylic emulsions, Ind. Eng. Chem. Res. 58(43)(2019)19825-19831. [14] L.G. Ma, Y.R. Sun, D.L. Li, W.L. Lu, Structure and effect of hydroxyapatite support as well as application in catalyst preparation, J. Chin. Ceram. Soc. 47(12)(2019)1808-1817.(in Chinese) [15] S.T. Pang, H.L. An, X.Q. Zhao, Y.J. Wang, Influence of Ca/P ratio on the catalytic performance of hydroxyapatite for decarboxylation of itaconic acid to methacrylic acid, Chin. J. Chem. Eng. 53(2023)402-408. [16] G.S. Guo, Y.X. Sun, Z.H. Wang, H.Y. Guo, Preparation of hydroxyapatite nanorods by homogeneous precipitation method underhydrothermal condition, Mod. Chem. Ind. 24(10)(2004)43-45.(in Chinese) [17] C. Stötzel, F.A. Müller, F. Reinert, F. Niederdraenk, J.E. Barralet, U. Gbureck, Ionadsorption behaviour of hydroxyapatite with different crystallinities, Colloids Surf. B Biointerfaces 74(1)(2009)91-95. [18] T. Miyazaki, S. Muroyama, Factors governing the fluorination of hydroxyapatite by an ionic liquid, Ceram. Int. 47(11)(2021)16225-16231. [19] H. Monma, S. Ueno, Apatite formation and behavior of fluoride ion in the system Ca3(PO4)2-H2O-F-, Gypsum Lime (1979)(1979)226-232. [20] E. Bouyer, F. Gitzhofer, M.I. Boulos, Morphological study of hydroxyapatite nanocrystal suspension, J. Mater. Sci. Mater. Med. 11(8)(2000)523-531. [21] M. Petrović, B. Čolović, V. Jokanovi c, D. Markovi c, Self assembly of biomimetic hydroxyapatite on the surface of different polymer thin films, J. Ceram. Process. Res. 13(4)(2012)398-404. [22] F. Freund, R.M. Knobel, Distribution of fluorine in hydroxyapatite studied by infrared spectroscopy, J. Chem. Soc. Dalton Trans. 11(1977)1136. [23] G. Penel, G. Leroy, C. Rey, B. Sombret, J.P. Huvenne, E. Bres, Infrared and Raman microspectrometry study of fluor-fluor-hydroxy and hydroxy-apatite powders, J. Mater. Sci. Mater. Med. 8(5)(1997)271-276. [24] X. Yin, H.H. Liu, A.G. Kong, H.W. Wang, Ionothermal synthesis of ultra-fine hydroxyapatite with tunable morphology, Chin. J. Inorg. Chem. 30(6)(2014)1287-1292. [25] M. Zhang, X.D. Xu, M.L. Zhang, Hydrothermal synthesis of sheaf-like CuO via ionic liquids, Mater. Lett. 62(3)(2008)385-388. [26] R. Kluger, Catalyzing decarboxylation by taming carbon dioxide, Pure Appl. Chem. 87(4)(2015)353-360. [27] A.V. Ignatchenko, J.P. McSally, M.D. Bishop, J. Zweigle, Ab initio study of the mechanism of carboxylic acids cross-ketonization on monoclinic zirconia via condensation to beta-keto acids followed by decarboxylation, Mol. Catal. 441(2017)35-62. [28] J. Li, T.B. Brill, Spectroscopy of hydrothermal solutions 18:pH-dependent kinetics of itaconic acid reactions in real time, J. Phys. Chem. A 105(48)(2001)10839-10845. [29] M. Sakai, Cheminform abstract:Studies of the isomerization of unsaturated carboxylic acids. ii. the thermal l rearrangement of citraconic acid to itaconic acid in aqueous solutions, Chem. Inform. 7(17)(1976)1232-1234. |