[1] H.Y. Zhao, H. Zhang, M.P. Hu, M. Hu, Y. Zhou, J.Q. Liang, Q. Wang, A fiber-coupled quartz-enhanced photoacoustic sensor for dissolved gas detection, Photonics 10 (2) (2023) 127. [2] J.J. Guo, Y.M. Wang, Z. Luo, F. Zhang, D.W. Yang, Real-time analysis of multicomponent dissolved inorganic carbon in the air-sea exchanging process using gas-liquid Raman spectroscopy, J. Environ. Chem. Eng. 9 (4) (2021) 105785. [3] C. Wimart-Rousseau, K. Lajaunie-Salla, P. Marrec, T. Wagener, P. Raimbault, V. Lagadec, M. Lafont, N. Garcia, F. Diaz, C. Pinazo, C. Yohia, F. Garcia, I. Xueref-Remy, P.E. Blanc, A. Armengaud, D. Lefevre, Temporal variability of the carbonate system and air-sea CO2 exchanges in a Mediterranean human-impacted coastal site, Estuar. Coast. Shelf Sci. 236 (2020) 106641. [4] Y.S. Chen, C.M. Tseng, J.R. Reinfelder, Spatiotemporal variations in dissolved elemental mercury in the river-dominated and monsoon-influenced East China Sea: Drivers, budgets, and implications, Environ. Sci. Technol. 54 (7) (2020) 3988-3995. [5] F.T. Liu, D. Wang, B.B. Zhang, J. Huang, Concentration and biodegradability of dissolved organic carbon derived from soils: A global perspective, Sci. Total Environ. 754 (2021) 142378. [6] Y.M. Chen, L. Zhang, C.G. Xu, S. Vaidyanathan, Dissolved inorganic carbon speciation in aquatic environments and its application to monitor algal carbon uptake, Sci. Total Environ. 541 (2016) 1282-1295. [7] J.J. Guo, Z. Luo, Q.S. Liu, D.W. Yang, H. Dong, S.K. Huang, A.D. Kong, L.L. Wu, High-sensitivity Raman gas probe for in situ multi-component gas detection, Sensors (Basel) 21 (10) (2021) 3539. [8] D.W. Yang, Q.S. Liu, J.J. Guo, L.L. Wu, A.D. Kong, Cavity enhanced multi-channels gases Raman spectrometer, Sensors (Basel) 21 (11) (2021) 3803. [9] Y.Y. Cai, G.R. Xu, D.W. Yang, H.Y. Tian, F.J. Zhou, J.J. Guo, On-line multi-gas component measurement in the mud logging process based on Raman spectroscopy combined with a CNN-LSTM-AM hybrid model, Anal. Chim. Acta 1259 (2023) 341200. [10] L. Hardy, Modeling nitrogen species as a source of titratable alkalinity and dissolved gas pressure in water, Appl. Geochem. 98 (2018) 301-309. [11] L. Natkaniec-Nowak, P. Drzewicz, P. Stach, M. Mroczkowska-Szerszen, G. Zukowska, The overview of analytical methods for studying of fossil natural resins, Crit. Rev. Anal. Chem. (2023) 1-23. [12] H.J. Zhao, Y.J. Jiang, Q. Xiao, C. Zhang, H.M. Behzad, Coupled carbon-nitrogen cycling controls the transformation of dissolved inorganic carbon into dissolved organic carbon in Karst aquatic systems, J. Hydrol. 592 (2021) 125764. [13] W.L. Li, X.Y. Wu, X. Yuan, W.H. Zhou, T. Wu, Rapid evaluation of γ-aminobutyric acid in foodstuffs by direct real-time mass spectrometry, Food Chem. 277 (2019) 617-623. [14] M. Li, Q.S. Liu, D.W. Yang, J.J. Guo, G.S. Si, L.L. Wu, R.E. Zheng, Underwater in situ dissolved gas detection based on multi-reflection Raman spectroscopy, Sensors (Basel) 21 (14) (2021) 4831. [15] X. Zhang, L.F. Li, Z.F. Du, X.L. Hao, L. Cao, Z.D. Luan, B. Wang, S.C. Xi, C. Lian, J. Yan, W.D. Sun, Discovery of supercritical carbon dioxide in a hydrothermal system, Sci. Bull. 65 (11) (2020) 958-964. [16] J.S. Stark, E.T. Peltzer, D.I. Kline, A.M. Queiros, T.E. Cox, K. Headley, J. Barry, F. Gazeau, J.W. Runcie, S. Widdicombe, M. Milnes, N.P. Roden, J. Black, S. Whiteside, G. Johnstone, J. Ingels, E. Shaw, L. Bodrossy, J.D. Gaitan-Espitia, W. Kirkwood, J. Gattuso, Free Ocean CO2 Enrichment (FOCE) experiments: Scientific and technical recommendations for future in situ ocean acidification projects, Prog. Oceanogr. 172 (2019) 89-107. [17] J.P. Barry, C. Lovera, K.R. Buck, E.T. Peltzer, J.R. Taylor, P. Walz, P.J. Whaling, P.G. Brewer, Use of a free ocean CO2 enrichment (FOCE) system to evaluate the effects of ocean acidification on the foraging behavior of a deep-sea urchin, Environ. Sci. Technol. 48 (16) (2014) 9890-9897. [18] L. Bonetti, L. De Nardo, F. Variola, S. Fare, In-situ Raman spectroscopy: An effective technique for the quantification of LCST transition of methylcellulose hydrogels, Mater. Lett. 274 (2020) 128011. [19] J.Y. Qin, Y.B. Ying, L.J. Xie, The detection of agricultural products and food using terahertz spectroscopy: A review, Appl. Spectrosc. Rev. 48 (6) (2013) 439-457. [20] S. Hanf, R. Keiner, D. Yan, J. Popp, T. Frosch, Fiber-enhanced Raman multigas spectroscopy: A versatile tool for environmental gas sensing and breath analysis, Anal. Chem. 86 (11) (2014) 5278-5285. [21] V.H. Le, M.C. Caumon, J. Pironon, P. de Donato, M. Piedevache, A. Randi, C. Lorgeoux, O. Barres, Quantitative monitoring of dissolved gases in a flooded borehole: Calibration of the analytical tools, Sci. Technol. Energy Transition 78 (2023) 21. [22] Y.Z. Ge, L.F. Li, S.C. Xi, Y.T. Zhang, Z.D. Luan, X. Zhang, Comparison of Raman spectral characteristics and quantitative methods between 13CH4 and 12CH4 from 25 to 400 ℃ and 50 to 400 bar, Spectrochim. Acta A Mol. Biomol. Spectrosc. 304 (2024) 123380. [23] S. Hanf, T. Bogozi, R. Keiner, T. Frosch, J. Popp, Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath, Anal. Chem. 87 (2) (2015) 982-988. [24] D.W. Yang, J.J. Guo, Q.S. Liu, Z. Luo, J.W. Yan, R.E. Zheng, Highly sensitive Raman system for dissolved gas analysis in water, Appl. Opt. 55 (27) (2016) 7744-7748. [25] Q.S. Liu, D.W. Yang, J.J. Guo, A.S. Yan, R.E. Zheng, Raman spectroscopy for gas detection using a folded near-concentric cavity, Spectrosc. Spectr. Anal. 40(2020) 3390-3393. [26] J.C. Chen, Y.W. Ho, Y.C. Tu, H.C. Liang, Y.F. Chen, High-peak-power passively Q-switched laser at 589 nm with intracavity stimulated Raman scattering, Crystals 13 (2) (2023) 334. [27] H. Kim, A. Zubairova, M. Alden, C. Brackmann, Signal-enhanced Raman spectroscopy with a multi-pass cavity for quantitative measurements of formaldehyde, major species and temperature in a one-dimensional laminar DME-air flame, Combust. Flame 244 (2022) 112221. [28] J.X. Wang, P.Y. Wang, W.G. Chen, F. Wan, Y.K. Lu, Z.J. Tang, A.N. Dong, Z.M. Lei, Z.X. Zhang, Highly sensitive multi-pass cavity enhanced Raman spectroscopy with novel polarization filtering for quantitative measurement of SF6 decomposed components in gas-insulated power equipment, Sens. Actuat. B Chem. 380 (2023) 133350. [29] H.N. Ding, D.J.J. Hu, X.T. Yu, X.X. Liu, Y.F. Zhu, G.H. Wang, Review on all-fiber online Raman sensor with hollow core microstructured optical fiber, Photonics 9 (3) (2022) 134. [30] Y.L. Cui, X. Tian, B.Y. Rao, W. Huang, H. Li, W.X. Pei, M. Wang, Z.L. Chen, Z.F. Wang, Stimulated Raman scattering of H2 in hollow-core photonics crystal fibers pumped by high-power narrow-linewidth fiber oscillators, Opt. Express 31 (5) (2023) 8441-8452. [31] J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M.C. Weikl, A. Leipertz, Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant, Meas. Sci. Technol. 19 (8) (2008) 085408. [32] Y. Gu, Y. Zhou, H. Tang, E.W. Rothe, G.P. Reck, Pressure dependence of vibrational Raman scattering of narrow-band, 248-nm, laser light by H2, N2, O2, CO2, CH4, C2H6, and C3H8 as high as 97bar, Appl. Phys. B 71 (6) (2000) 865-871. [33] P.Y. Wang, W.G. Chen, J.X. Wang, J. Tang, Y.L. Shi, F. Wan, Multigas analysis by cavity-enhanced Raman spectroscopy for power transformer diagnosis, Anal. Chem. 92 (8) (2020) 5969-5977. [34] D.V. Petrov, I.I. Matrosov, A.R. Zaripov, A.S. Maznoy, Effects of pressure and composition on Raman spectra of CO-H2-CO2-CH4 mixtures, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 215 (2019) 363-370. [35] P.Y. Wang, W.G. Chen, J.X. Wang, F. Zhou, J. Hu, Z.X. Zhang, F. Wan, Hazardous gas detection by cavity-enhanced Raman spectroscopy for environmental safety monitoring, Anal. Chem. 93 (46) (2021) 15474-15481. [36] D.V. Petrov, I.I. Matrosov, A.A. Tikhomirov, High-sensitivity spontaneous Raman spectrometer for gaseous media, J. Appl. Spectrosc. 82 (1) (2015) 120-124. |