[1] J.H. Kim, H.S. Yang, K.H. Baik, B.G. Seong, C.H. Lee, S.Y. Hwang, Development and properties of nanostructured thermal spray coatings, Curr. Appl. Phys. 6 (6) (2006) 1002-1006. [2] Y.Q. Wang, G. Sayre, Commercial thermal barrier coatings with a double-layer bond coat on turbine vanes and the process repeatability, Surf. Coat. Technol. 203 (16) (2009) 2186-2192. [3] Z.G. Ban, L.L. Shaw, Synthesis and processing of nanostructured WC-Co materials, J. Mater. Sci. 37 (16) (2002) 3397-3403. [4] W.B. Liu, X.Y. Song, J.X. Zhang, G.Z. Zhang, X.M. Liu, Preparation of ultrafine WC-Co composite powder by in situ reduction and carbonization reactions, Int. J. Refract. Met. Hard Mater. 27 (1) (2009) 115-120. [5] C.H. Wu, Preparation of ultrafine tungsten powders by in situ hydrogen reduction of nano-needle violet tungsten oxide, Int. J. Refract. Met. Hard Mater. 29 (6) (2011) 686-691. [6] H.Y. Wu, Q.Y. Wang, M.L. Qin, R.W. Yin, Z.Y. Zhang, B.R. Jia, X.H. Qu, Synthesis of tungsten carbide nanopowders by direct carbonization of tungsten oxide and carbon: Effects of tungsten oxide source on phase structure and morphology evolution, Ceram. Int. 46 (7) (2020) 8787-8795. [7] M. Zhu, X.Y. Bao, X.P. Yang, N.S. Gu, H. Wang, M.Q. Zeng, L.Y. Dai, A novel method for direct synthesis of WC-co nanocomposite powder, Metall. Mater. Trans. A 42 (9) (2011) 2930-2936. [8] Z.G. Ban, L.L. Shaw, On the reaction sequence of WC-Co formation using an integrated mechanical and thermal activation process, Acta Mater. 49 (15) (2001) 2933-2939. [9] P. Choongkwon, K. Jiwoong, K. Shinhoo. Effect of cobalt on the synthesis and sintering of WC-Co composite powders, J. Alloys Compd. 76 (2018) 564-571. [10] T. Ryu, H.Y. Sohn, K.S. Hwang, Z.Z. Fang, Chemical vapor synthesis and characterization of nanosized WC-co composite powder and post-treatment, Ind. Eng. Chem. Res. 47 (23) (2008) 9384-9388. [11] J.C. Kim, B.K. Kim, Synthesis of nanosized tungsten carbide powder by the chemical vapor condensation process, Scr. Mater. 50 (7) (2004) 969-972. [12] C.W. Won, B.S. Chun, H.Y. Sohn, Preparation of ultrafine tungsten carbide powder by CVD method from WCl6-C2H2-H2 mixtures, J. Mater. Res. 8 (10) (1993) 2702-2708. [13] F. Pan, J.Y. Liu, Z. Du, Q.S. Zhu, M.J. Zhang, D. Yan, S.F. Li, Reaction process of WC prepared under a CO atmosphere in a fluidized bed, Ind. Eng. Chem. Res. 60 (1) (2021) 162-172. [14] F. Pan, Z. Du, S.F. Li, J. Li, M.J. Zhang, M.Q. Xiang, Q.S. Zhu, Preparation of nano-sized tungsten carbide via fluidized bed, Chin. J. Chem. Eng. 28 (3) (2020) 923-932. [15] S. Cetinkaya, S. Eroglu, Thermodynamic analysis and reduction of tungsten trioxide using methane, Int. J. Refract. Met. Hard Mater. 51 (2015) 137-140. [16] H. Lin, J.C. Sun, C.H. Li, H. He, L.Z. Qin, Q. Li, A facile route to synthesize WC-Co nanocomposite powders and properties of sintered bulk, J. Alloys Compd. 682 (2016) 531-536. [17] M. Mardali, R. Sarraf-Mamoory, B. Sadeghi, B. Safarbali, Acrylamide route for the co-synthesis of tungsten carbide-cobalt nanopowders with additives, Ceram. Int. 42 (8) (2016) 9382-9386. [18] G.H. Lee, S. Kang, Sintering of nano-sized WC-Co powders produced by a gas reduction-carburization process, J. Alloys Compd. 419 (1-2) (2006) 281-289. [19] J.M. Giraudon, P. Devassine, J.F. Lamonier, L. Delannoy, L. Leclercq, G. Leclercq, Synthesis of tungsten carbides by temperature-programmed reaction with CH4-H2 mixtures. influence of the CH4 and hydrogen content in the carburizing mixture, J. Solid State Chem. 154 (2) (2000) 412-426. [20] S.Y. Park, M.C. Kim, C.G. Park, Mechanical properties and microstructure evolution of the nano WC-Co coatings fabricated by detonation Gun spraying with post heat treatment, Mater. Sci. Eng. A 449 (2007) 894-897. [21] D.A. Stewart, P.H. Shipway, D.G. McCartney, Abrasive wear behaviour of conventional and nanocomposite HVOF-sprayed WC-Co coatings, Wear 225 (1999) 789-798. [22] C.F. Davidson, G.B. Alexander, M.E. Wadsworth, Catalytic effect of cobalt on the carburization kinetics of tungsten, Metall. Trans. A 10 (8) (1979) 1059-1069. [23] W.B. Zhan, H.B. Wang, S.H. Liang, X.M. Liu, X.Y. Song, Acceleration effect of cobalt on carburization of tungsten at low temperature, J. Alloys Compd. 732 (2018) 429-435. [24] Z.Y. Zhang, Y. Zhang, M. Muhammed, The reduction of cobalt doped ammonium paratungstate to nanostructured W-Co powder, Int. J. Refract. Met. Hard Mater. 20 (3) (2002) 227-233. [25] E.T. Zhu, J.X. Zhang, S.D. Guo, X.Y. Yang, X. Zhang, J.G. Yang, Effect of Co on morphology and preparation of in situ synthesis of WC-Co composite powders, Mater. Res. Express 6 (8) (2019) 086522. [26] H.J. Shang, H.L. Li, W.J. Li, F. Pan, Z. Du, Pre-reduction of WO3-Co3O4 by H2-C2H4 in a fluidized bed, Chin. J. Chem. Eng. 66 (2024) 273-284. [27] Stanko Popovi′c, Quantitative phase analysis by X-ray diffraction-Doping methods and applications, Crystals 10 (2020) 27-42. [28] K.M. Reddy, T.N. Rao, K. Radha, J. Joardar, Nanostructured tungsten carbides by thermochemical processing, J. Alloys Compd. 494 (1-2) (2010) 404-409. [29] F.C. Nava Alonso, M.L. Zambrano Morales, A. Uribe Salas, J.E. Bedolla Becerril, Tungsten trioxide reduction-carburization with carbon monoxide-carbon dioxide mixtures: Kinetics and thermodynamics, Int. J. Miner. Process. 20 (1-2) (1987) 137-151. [30] J. Ma, S.G. Zhu, Direct solid-state synthesis of tungsten carbide nanoparticles from mechanically activated tungsten oxide and graphite, Int. J. Refract. Met. Hard Mater. 28 (5) (2010) 623-627. [31] A.A. Burkov, S.A. Pyachin, A.V. Zaytsev, Influence of carbon content of WC-co electrode materials on the wear resistance of electrospark coatings, J. Surf. Eng. Mater. Adv. Technol. 2 (2) (2012) 65-70. [32] H.B. Wang, X.Y. Song, X.M. Liu, Y. Gao, C.B. Wei, Y. Wang, G.S. Guo, Effect of carbon content of WC-Co composite powder on properties of cermet coating, Powder Technol. 246 (2013) 492-498. [33] M.H. Kim, E.K. Lee, J.H. Jun, S.J. Kong, G.Y. Han, B.K. Lee, T.J. Lee, K.J. Yoon, Hydrogen production by catalytic decomposition of methane over activated carbons: kinetic study, Int. J. Hydrog. Energy 29 (2) (2004) 187-193. [34] E. Ruckenstein, H.Y. Wang, Carbon deposition and catalytic deactivation during CO2 reforming of CH4 over Co/γ-Al2O3 catalysts, J. Catal. 205 (2) (2002) 289-293. [35] S.H. Lim, J. Lin, Z. Luo, Z. Shen, Efficient growth of horizontally aligned single-walled carbon nanotubes by chemical vapor deposition over MgO-supported bimetallic co-based catalysts, J. Nanosci. Nanotechnol. 11 (1) (2011) 143-147. [36] A.H. Wu, C.P. Lei, G. Liu, J.C. Tang, L.W. Hao, Effect of the morphology of raw material powders on homogeneity of tungsten and tungsten carbide nano-powders, Cemented Carbide 5 (2014) 302-308. (in Chinese). [37] Q.W. Zhang, K.H. Shi, J.B. Gu, K.L. Dong, W. Zeng, P. Wang, Y. Liao, Effect of carbon content near the decarbonization phase boundary on the physical and mechanical properties of WC-6% Co cemented carbides, J Superhard Mater. 44 (2022) 350-357. [38] T.Z. Huang, E.X. Wu, Y.X. Li, D. Zou, Y.Y. Xie, Effects of carbon content on WC grain growth activation energy of WC-6Co ultrafine cemented carbides, Rare Metals & Cemented Carbides 45 (2017) 57-62. (in Chinese). [39] Y.M. Wang, L. Zhang, Y.F. Yang, K. Kondoh, L.B. Sun, Y.N. Lu, Elimination of ƞ phase in WC-Co cemented carbides during laser powder bed fusion by powder coating compensation strategy, J Am Ceram Soc. 106 (3) (2023) 1681-1693. [40] I. Konyashin, S. Hlawatschek, B. Ries, F. Lachmann, F. Dorn, A. Sologubenko, T. Weirich, On the mechanism of WC coarsening in WC-Co hardmetals with various carbon contents, Int. J. Refract. Met. Hard Mater. 27 (2) (2009) 234-243. [41] W.H. Chen, P.K. Nayak, H.T. Lin, M.P. Chang, J.L. Huang, Synthesis of nanostructured tungsten carbide via metal-organic chemical vapor deposition and carburization process, Int. J. Refract. Met. Hard Mater. 47 (2014) 44-48. [42] B. Sarma, N.M. Tikekar, K.S. Ravi, Kinetics of growth of superhard boride layers during solid state diffusion of boron into titanium, Ceram. Int. 38 (2012) 6795-6805. [43] U. Sen, Kinetics of niobium carbide coating produced on AISI 1040 steel by thermo-reactive deposition technique, Mater. Chem. Phys. 89 (2004) 189-194. [44] H. Xu, C. Liu, V.V. Silberschmidt, S.S. Pramana, T.J. White, Z. Chen, V.L. Acoff, Behavior of aluminum oxide, intermetallics and voids in Cu-Al wire bonds, Acta Mater. 59 (2011) 5661-5673. |