[1] L.Y. Yin, Y.F. Hu, H.Y. Wang, The remarkable effect of organic salts on 1,3,5-trioxane synthesis, Petrol. Sci. 13 (4) (2016) 770-775. [2] J. Auge, R. Gil, A convenient solvent-free preparation of 1,3,5-trioxanes, Tetrahedron Lett. 43 (44) (2002) 7919-7920. [3] J. Masamoto, K. Hamanaka, K. Yoshida, H. Nagahara, K. Kagawa, T. Iwaisako, H. Komaki, Synthesis of trioxane using heteropolyacids as catalyst, Angew. Chem. Int. Ed. 39 (12) (2000) 2102-2104. [4] J. Masamoto, H. Nagahara, T. Yokoyama, R. Fujikawa, T. Tanaka, T. Yamaguchi, Ultrahigh molecular weight polyoxymethylene from aqueous formaldehyde solution, Chem. Lett. 28 (10) (1999) 1131-1132. [5] L. Lautenschutz, D. Oestreich, P. Haltenort, U. Arnold, E. Dinjus, J. Sauer, Efficient synthesis of oxymethylene dimethyl ethers (OME) from dimethoxymethane and trioxane over zeolites, Fuel Process. Technol. 165 (2017) 27-33. [6] Y.L. Ye, M.Q. Fu, H.L. Chen, X.M. Zhang, Effect of acidity on the catalytic performance of ZSM-5 zeolites in the synthesis of trioxane from formaldehyde, J. Fuel Chem. Technol. 48 (3) (2020) 311-320. [7] J.G. Qi, Y.F. Hu, W.T. Ma, H.Y. Wang, S.Q. Jiang, L.Y. Yin, X.M. Zhang, Z.Y. Yang, Y.C. Wang, The reactions that determine the yield and selectivity of 1,3,5-trioxane, Chem. Eng. J. 331 (2018) 311-316. [8] Q. Wu, W.J. Li, M. Wang, Y. Hao, T.H. Chu, J.Q. Shang, H.S. Li, Y. Zhao, Q.Z. Jiao, Synthesis of polyoxymethylene dimethyl ethers from methylal and trioxane catalyzed by Broensted acid ionic liquids with different alkyl groups, RSC Adv. 5 (71) (2015) 57968-57974. [9] M. Maiwald, T. Grutzner, E. Strofer, H. Hasse, Quantitative NMR spectroscopy of complex technical mixtures using a virtual reference: chemical equilibria and reaction kinetics of formaldehyde-water-1,3,5-trioxane, Anal. Bioanal. Chem. 385 (5) (2006) 910-917. [10] X.P. Pei, H. Li, Z.S. Zhang, Y. Meng, X.G. Li, X. Gao, Process intensification for energy efficient reactive distillation of trioxane production from aqueous formaldehyde, Chem. Eng. Process. Process. Intensif. 175 (2022) 108914. [11] T. Grutzner, H. Hasse, Solubility of formaldehyde and trioxane in aqueous solutions, J. Chem. Eng. Data 49 (3) (2004) 642-646. [12] S.Q. Jiang, X.M. Zhang, Y.F. Hu, L.Y. Yin, J.G. Qi, C.X. Ren, S.Q. Mo, Vapor-liquid and chemical equilibria model for formaldehyde-trioxane-sulfuric acid-water mixtures, J. Chem. Technol. Biotechnol. 95 (2020) 719-729. [13] L.Y. Yin, Y.F. Hu, X.M. Zhang, J.G. Qi, W.T. Ma, The salt effect on the yields of trioxane in reaction solution and in distillate, RSC Adv. 5 (47) (2015) 37697-37702. [14] X.M. Zhang, Y.F. Hu, W.T. Ma, J.G. Qi, S.Q. Mo, Vapor-liquid and chemical equilibria model for formaldehyde+ 1,3,5-trioxane+ methanol+ salt+ water system, Fluid Phase Equil. 507 (2020) 112434. [15] G. Kaur, H. Kumar, M. Singla, Diverse applications of ionic liquids: a comprehensive review, J. Mol. Liq. 351 (2022) 118556. [16] S.W. Tang, A.M. Scurto, B. Subramaniam, Improved 1-butene/isobutane alkylation with acidic ionic liquids and tunable acid/ionic liquid mixtures, J. Catal. 268 (2) (2009) 243-250. [17] Y. Meng, B. Liang, S.W. Tang, A study on the liquid-phase oxidation of toluene in ionic liquids, Appl. Catal. Gen. 439-440 (2012) 1-7. [18] K.T. Jin, T. Zhang, J.Y. Ji, M. Zhang, Y. Zhang, S.W. Tang, Functionalization of MCM-22 by dual acidic ionic liquid and its paraffin absorption modulation properties, Ind. Eng. Chem. Res. 54 (2015) 164-170. [19] Y. Zhang, T. Zhang, P.X. Gan, H.X. Li, M. Zhang, K.T. Jin, S.W. Tang, Solubility of isobutane in ionic liquids BMIm PF6, BMIm BF4, and BMIm Tf2N, J. Chem. Eng. Data 60 (2015) 1706-1714. [20] S. Zhang, T. Zhang, S.W. Tang, Determination of the Hammett acidity functions of triflic acid/ionic liquid binary mixtures by the 13C NMR-probe method, J. Chem. Eng. Data 61 (6) (2016) 2088-2097. [21] H.X. Li, T. Zhang, S.J. Yuan, S.W. Tang, MCM-36 zeolites tailored with acidic ionic liquid to regulate adsorption properties of isobutane and 1-butene, Chin. J. Chem. Eng. 24 (12) (2016) 1703-1711. [22] B.S. Wang, L. Qin, T.C. Mu, Z.M. Xue, G.H. Gao, Are ionic liquids chemically stable? Chem. Rev. 117 (10) (2017) 7113-7131. [23] I. Rykowska, J. Ziemblinska, I. Nowak, Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids: a review, J. Mol. Liq. 259 (2018) 319-339. [24] H. Xie, L. Lv, T. Zhang, S.W. Tang, Reaction kinetics of trioxane synthesis from formaldehyde catalyzed by sulfuric acid/ionic liquid, React. Kinet. Mech. Catal. 133 (2) (2021) 825-840. [25] Q.S. Li, F.Y. Xing, Z.G. Lei, B.H. Wang, Q.L. Chang, Isobaric vapor-liquid equilibrium for isopropanol + water + 1-ethyl-3-methylimidazolium tetrafluoroborate, J. Chem. Eng. Data 53 (1) (2008) 275-279. [26] Q.S. Li, J.G. Zhang, Z.G. Lei, J.Q. Zhu, B.H. Wang, X.Q. Huang, Isobaric vapor-liquid equilibrium for (propan-2-ol + water + 1-butyl-3-methylimidazolium tetrafluoroborate), J. Chem. Eng. Data 54 (9) (2009) 2785-2788. [27] H. Renon, J.M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures, AIChE J. 14 (1) (1968) 135-144. [28] J. Cao, G.R. Yu, X.C. Chen, A.A. Abdeltawab, A.M. Al-Enizi, Determination of vapor-liquid equilibrium of methyl acetate + methanol + 1-alkyl-3-methylimidazolium dialkylphosphates at 101.3 kPa, J. Chem. Eng. Data 62 (2) (2017) 816-824. [29] S.D. Phillips, K.R. Eberhardt, B. Parry, Guidelines for expressing the uncertainty of measurement results containing uncorrected bias, J. Res. Natl. Inst. Stand. Technol. 102 (5) (1997) 577-585. [30] G. Maurer, Vapor-liquid equilibrium of formaldehyde-and water-containing multicomponent mixtures, AIChE J. 32 (6) (1986) 932-948. [31] D.S. Abrams, J.M. Prausnitz, Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems, AIChE J. 21 (1) (1975) 116-128. [32] M. Albert, H. Hasse, C. Kuhnert, G. Maurer, New experimental results for the vapor-liquid equilibrium of the binary system (trioxane + water) and the ternary system (formaldehyde + trioxane + water), J. Chem. Eng. Data 50 (4) (2005) 1218-1223. [33] I.I. Serebrennaya, S.Sh Byk, Liquid-vapor equilibrium in the system trioxane + water under atmospheric pressure, Zh. Prikl. Khim. 39 (1966) 1869-1872. [34] Z. Qiu, Z. Luo, Y. Hu, Study on vapor liquid equillibria of the trioxane-water binary system, J. Nanchang Univ. (Eng. Technol.) 20 (1996) 9-13, (in Chinese). [35] J. Wisniak, J. Ortega, L. Fernandez, A fresh look at the thermodynamic consistency of vapour-liquid equilibria data, J. Chem. Thermodyn. 105 (2017) 385-395. [36] M.C.C. Ribeiro, Strong anion-anion hydrogen bond in the ionic liquid 1-ethyl-3-methylimidazolium hydrogen sulfate, J. Mol. Liq. 310 (2020) 113178. [37] J. de George, C.P. Landee, M.M. Turnbull, Phenazin-5-ium hydrogen sulfate monohydrate, Acta Crystallogr. Sect. E Struct. Rep. Online 69 (4) (2013) o471. [38] M.I. Mendelev, D.J. Srolovitz, A regular solution model for impurity drag on a migrating grain boundary, Acta Mater. 49 (4) (2001) 589-597. [39] J.X. Yang, Y. Wang, H.J. Qian, Z.Y. Lu, Z. Gong, H. Liu, S.X. Cui, Force-induced hydrogen bonding between single polyformaldehyde chain and water, Polymer 253 (2022) 125007. [40] J. Li, X.W. Zhang, Q.J. Liu, Z.Q. Yin, Measurement and correlation of solubility of 1,3,5-trioxane in binary solvents from (288.15 to 328.15) K, J. Mol. Liq. 234 (2017) 469-480. [41] S.G. Zhang, X.J. Qi, X.Y. Ma, L.J. Lu, Y.Q. Deng, Hydroxyl ionic liquids: the differentiating effect of hydroxyl on polarity due to ionic hydrogen bonds between hydroxyl and anions, J. Phys. Chem. B 114 (11) (2010) 3912-3920. [42] K.A. Kurnia, T.E. Sintra, C.M. Neves, K. Shimizu, J.N. Canongia Lopes, F. Goncalves, S.P. Ventura, M.G. Freire, L.M. Santos, J.A. Coutinho, The effect of the cation alkyl chain branching on mutual solubilities with water and toxicities, Phys. Chem. Chem. Phys. 16 (37) (2014) 19952-19963. [43] G.Q. Chen, J.H. Liang, J.C. Han, H.K. Zhao, Solubility modeling, solute-solvent interactions, and thermodynamic dissolution properties of p-nitrophenylacetonitrile in sixteen monosolvents at temperatures ranging from 278.15 to 333.15 K, J. Chem. Eng. Data 64 (1) (2019) 315-323. [44] K. Levenberg, A method for the solution of certain non-linear problems in least squares, Q. Appl. Math. 2 (2) (1944) 164-168. [45] Z.G. Zhang, Q. Zhang, Q.Q. Zhang, T. Zhang, W.X. Li, Isobaric vapor-liquid equilibrium of tert-butyl alcohol + water + triethanolamine-based ionic liquid ternary systems at 101.3 kPa, J. Chem. Eng. Data 60 (7) (2015) 2018-2027. [46] A. Ravichandran, R. Khare, C.C. Chen, Predicting NRTL binary interaction parameters from molecular simulations, AIChE J. 64 (7) (2018) 2758-2769. |