[1] Q. Chen, Z.Z. Liu, X. Ma, Y.Q. Wang, Artificial neural correlation analysis for performance-indicator-related nonlinear process monitoring, IEEE Trans. Ind. Inform. 18 (2) (2022) 1039-1049.[LinkOut]. [2] M. Bakhtiaridoust, M. Yadegar, N. Meskin, Data-driven fault detection and isolation of nonlinear systems using deep learning for Koopman operator, ISA Trans. 134 (2023) 200-211. [3] W.P. Lu, X.F. Yan, Balanced multiple weighted linear discriminant analysis and its application to visual process monitoring, Chin. J. Chem. Eng. 36 (2021) 128-137. [4] J.C. Qian, Z.H. Song, Y. Yao, Z.R. Zhu, X.M. Zhang, A review on autoencoder based representation learning for fault detection and diagnosis in industrial processes, Chemom. Intell. Lab. Syst. 231 (2022) 104711. [5] S. Xiong, L. Zhou, Y. Dai, X. Ji, Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis, Chin. J. Chem. Eng., 56(2023)1-14. [6] S.T. Chen, Q.C. Jiang, Distributed robust process monitoring based on optimized denoising autoencoder with reinforcement learning, IEEE Trans. Instrum. Meas. 71 (2022) 3503411. [7] J.S. Li, X.F. Yan, Process monitoring using principal component analysis and stacked autoencoder for linear and nonlinear coexisting industrial processes, J. Taiwan Inst. Chem. Eng. 112 (2020) 322-329. [8] Z.Q. Ge, Review on data-driven modeling and monitoring for plant-wide industrial processes, Chemom. Intell. Lab. Syst. 171 (2017) 16-25. [9] Y. Li, D.S. Yang, Local component based principal component analysis model for multimode process monitoring, Chin. J. Chem. Eng. 34 (2021) 116-124. [10] C.H. Hu, J.Y. Luo, X.Y. Kong, Z.Y. Xu, Orthogonal multi-block dynamic PLS for quality-related process monitoring, IEEE Trans. Autom. Sci. Eng. PP (99) (2023) 1-14. [11] L. Liu, J.C. Liu, H.H. Wang, S.B. Tan, M. Yu, P. Xu, A multivariate monitoring method based on kernel principal component analysis and dual control chart, J. Process. Contr. 127 (2023) 102994. [12] Z.F. Pan, Y.L. Wang, Y. Cao, W.H. Gui, VAE-based interpretable latent variable model for process monitoring, IEEE Trans. Neural Netw. Learn. Syst. 35 (5) (2024) 6075-6088. [13] J.C. Yang, L. Wang, Nonlocal, local and global preserving stacked autoencoder based fault detection method for nonlinear process monitoring, Chemom. Intell. Lab. Syst. 235 (2023) 104758. [14] J.B. Yu, X.F. Yan, Whole process monitoring based on unstable neuron output information in hidden layers of deep belief network, IEEE Trans. Cybern. 50 (9) (2020) 3998-4007. [15] F. Yu, J.C. Liu, D.M. Liu, Multimode process monitoring based on modified density peak clustering and parallel variational autoencoder, Mathematics 10 (14) (2022) 2526. [16] M. Mou, X.Q. Zhao, K. Liu, Y.Y. Hui, Variational autoencoder based on distributional semantic embedding and cross-modal reconstruction for generalized zero-shot fault diagnosis of industrial processes, Process. Saf. Environ. Prot. 177 (2023) 1154-1167. [17] Z.H. Zhang, T. Jiang, C. Zhan, Y.P. Yang, Gaussian feature learning based on variational autoencoder for improving nonlinear process monitoring, J. Process Control, 75(2019)136-155. [18] Z.Y. Yao, Q.C. Jiang, X.S. Gu, C.J. Pan, Distributed temporal-spatial neighbourhood enhanced variational autoencoder for multiunit industrial plant-wide process monitoring, Can. J. Chem. Eng., 5 (2024) 1917-1931. [19] Z.Q. Ge, J. Chen, Plant-wide industrial process monitoring: a distributed modeling framework, IEEE Trans. Ind. Inf., 12(2016)310-321. [20] Q.C. Jiang, X.F. Yan, Plant-wide process monitoring based on mutual information-multiblock principal component analysis, ISA Trans. 53 (5) (2014) 1516-1527. [21] Q.C. Jiang, X.F. Yan, Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian inference-based multiblock KPCA, J. Process. Contr. 32 (2015) 38-50. [22] C.H. Zhao, H. Sun, F. Tian, Total variable decomposition based on sparse cointegration analysis for distributed monitoring of nonstationary industrial processes, IEEE Trans. Contr. Syst. Technol. 28 (4) (2020) 1542-1549. [23] C.H. Zhao, H. Sun, Dynamic distributed monitoring strategy for large-scale nonstationary processes subject to frequently varying conditions under closed-loop control, IEEE Trans. Ind. Electron. 66 (6) (2019) 4749-4758. [24] L.J. Luo, X. Peng, C.D. Tong, A multigroup framework for fault detection and diagnosis in large-scale multivariate systems, J. Process. Contr. 100 (2021) 65-79. [25] Q.C. Jiang, S.F. Yan, H. Cheng, X.F. Yan, Local-global modeling and distributed computing framework for nonlinear plant-wide process monitoring with industrial big data, IEEE Trans. Neural Netw. Learn. Syst. 32 (8) (2021) 3355-3365. [26] W.Q. Wu, C.Y. Song, J. Zhao, G.Z. Wang, Knowledge-enhanced distributed graph autoencoder for multiunit industrial plant-wide process monitoring, IEEE Trans. Ind. Inf. 20(2)(2024) 1871-1883. [27] Q.C. Jiang, J.S. Jiang, W.M. Zhong, X.F. Yan, Optimized Gaussian-process-based probabilistic latent variable modeling framework for distributed nonlinear process monitoring, IEEE Trans. Syst. Man Cybern. Syst. 53 (5) (2023) 3187-3198. [28] P. Tang, K.X. Peng, J. Dong, Nonlinear quality-related fault detection using combined deep variational information bottleneck and variational autoencoder, ISA Trans. 114 (2021) 444-454. [29] D. P. Kingma, M. Welling, Auto-encoding variational Bayes, arXiv preprint arXiv:1312.6114 (2013). [30] M. Madakyaru, K.R. Kini, A novel anomaly detection scheme for high dimensional systems using Kantorovich distance statistic, Int. J. Inf. Technol. 14 (6) (2022) 3001-3010. [31] B.M.S. Arifin, Z.K. Li, S.L. Shah, Change point detection using the kantorovich distance algorithm, IFAC-PapersOnLine 51 (18) (2018) 708-713. [32] A. Takatsu, Wasserstein geometry of Gaussian measures, Osaka J. Math., 48(2011)1005-1026. [33] R. Gonzalez, B. Huang, E. Lau, Process monitoring using kernel density estimation and Bayesian networking with an industrial case study, ISA Trans. 58 (2015) 330-347. [34] H.Y. Yu, F. Khan, V. Garaniya, A sparse PCA for nonlinear fault diagnosis and robust feature discovery of industrial processes, AlChE. J. 62 (5) (2016) 1494-1513. [35] K. Zhong, M. Han, T. Qiu, B. Han, and Y.-W. Chen, Distributed dynamic process monitoring based on minimal redundancy maximal relevance variable selection and Bayesian inference, IEEE Trans. Control Syst. Technol., 28(5)(2019) 2037-2044. [36] B. Wang, Q.C. Jiang, X.F. Yan, Fault detection and identification using a Kullback-Leibler divergence based multi-block principal component analysis and Bayesian inference, Korean J. Chem. Eng. 31 (6) (2014) 930-943. [37] J.J. Downs, E.F. Vogel, A plant-wide industrial process control problem, Comput. Chem. Eng. 17 (3) (1993) 245-255. [38] A. Bathelt, N.L. Ricker, M. Jelali, Revision of the Tennessee Eastman process model, IFAC-PapersOnLine 48 (8) (2015) 309-314. [39] S. Yin, S.X. Ding, A. Haghani, H.Y. Hao, P. Zhang, A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process, J. Process. Contr. 22 (9) (2012) 1567-1581. [40] Z.C. Li, L. Tian, Q.C. Jiang, X.F. Yan, Distributed-ensemble stacked autoencoder model for non-linear process monitoring, Inf. Sci. 542 (2021) 302-316. |