[1] X. Wei, G. Johnson, Y. Ye, M. Cui, S.W. Yu, Y. Ran, J. Cai, Z. Liu, X. Chen, W. Gao, P.J.L. Bean, W. Zhang, T.Y. Zhao, F.A. Perras, E.J. Crumlin, X. Zhang, R.J. Davis, Z. Wu, S. Zhang, Surfactants used in colloidal synthesis modulate Ni nanoparticle surface evolution for selective CO2 hydrogenation, J. Am. Chem. Soc. 145 (26) (2023) 14298-14306. [2] A. Tavasoli, A. Gouda, T. Zahringer, Y.F. Li, H. Quaid, C.J. Viasus Perez, R. Song, M. Sain, G. Ozin, Enhanced hybrid photocatalytic dry reforming using a phosphated Ni-CeO2 nanorod heterostructure, Nat. Commun. 14 (1) (2023) 1435. [3] D.D. Wang, Z.X. Yuan, X.L. Wu, W. Xiong, J.Q. Ding, Z.H. Zhang, W.X. Huang, Ni single atoms confined in nitrogen-doped carbon nanotubes for active and selective hydrogenation of CO2 to CO, ACS Catal. 13 (10) (2023) 7132-7138. [4] X.X. Dong, B.S. Jin, Z.W. Kong, Y.Q. Sun, Promotion effect of Re additive on the bifunctional Ni catalysts for methanation coupling with water gas shift of biogas: insights from activation energy, Chin. J. Chem. Eng. 28 (6) (2020) 1628-1636. [5] C.X. He, Y.L. Gong, S.T. Li, J.X. Wu, Z.J. Lu, Q.X. Li, L.Z. Wang, S.Q. Wu, J.L. Zhang, Single-atom alloys materials for CO2 and CH4 catalytic conversion, Adv. Mater. 36 (16) (2024) e2311628. [6] J.A. Onrubia-Calvo, S. Lopez-Rodriguez, I.J. Villar-Garcia, V. Perez-Dieste, A. Bueno-Lopez, J.R. Gonzalez-Velasco, Molecular elucidation of CO2 methanation over a highly active, selective and stable LaNiO3/CeO2-derived catalyst by in situ FTIR and NAP-XPS, Appl. Catal. B Environ. 342 (2024) 123367. [7] L.P. Merkouri, A.I. Paksoy, T. Ramirez Reina, M.S. Duyar, The need for flexible chemical synthesis and how dual-function materials can pave the way, ACS Catal. 13 (11) (2023) 7230-7242. [8] S. De, A. Dokania, A. Ramirez, J. Gascon, Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization, ACS Catal. 10 (23) (2020) 14147-14185. [9] C.Y. Yang, T.Y. Zhang, Y.S. Chen, W.J. Wang, H.Y. Zhuo, X.F. Yang, Y.Q. Huang, Intrinsic mechanism for carbon dioxide methanation over Ru-based nanocatalysts, ACS Catal. 13 (17) (2023) 11556-11565. [10] Y. Xie, J.J. Wen, Z.L. Li, J.J. Chen, Q.L. Zhang, P. Ning, Y.Q. Chen, J.M. Hao, Progress in reaction mechanisms and catalyst development of ceria-based catalysts for low-temperature CO2 methanation, Green Chem. 25 (1) (2023) 130-152. [11] A. Alkhoori, O. Elmutasim, A. Dabbawala, M.A. Vasiliades, K.C. Petallidou, A. Emwas, D. Anjum, N. Singh, M. Baker, N. Charisiou, M. Goula, A.M. Efstathiou, K. Polychronopoulou, Mechanistic features of the CeO2-modified Ni/Al2O3 catalysts for the CO2 methanation reaction: experimental and ab initio studies, ACS Appl. Energy Mater. 6 (2023) 8550-8571. [12] A.L.A. Marinho, F.S. Toniolo, F.B. Noronha, F. Epron, D. Duprez, N. Bion, Highly active and stable Ni dispersed on mesoporous CeO2-Al2O3 catalysts for production of syngas by dry reforming of methane, Appl. Catal. B Environ. 281 (2021) 119459. [13] G. Busca, The surface of transitional aluminas: a critical review, Catal. Today 226 (2014) 2-13. [14] S.C. Qi, X.Y. Wei, Z.M. Zong, Y.K. Wang, Application of supported metallic catalysts in catalytic hydrogenation of arenes, RSC Adv. 3 (34) (2013) 14219-14232. [15] A. Jamsaz, N. Pham-Ngoc, M.Y. Wang, D.H. Jeong, E.S. Oh, E.W. Shin, Synergistic effect of macroporosity and crystallinity on catalyst deactivation behavior over macroporous Ni/CexZr1-xO2-Al2O3 for dry reforming of methane, Chem. Eng. J. 476 (2023) 146821. [16] J. Liu, C.Y. Zheng, J.R. Yue, G.W. Xu, Synthesis, characterization and catalytic methanation performance of modified Kaolin-supported Ni-based catalysts, Chin. J. Chem. Eng. 27 (12) (2019) 2953-2959. [17] H.Z. Liu, X.J. Zou, X.G. Wang, X.G. Lu, W.Z. Ding, Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen, J. Nat. Gas Chem. 21 (6) (2012) 703-707. [18] C.B. Cheng, D.K. Shen, R. Xiao, C.F. Wu, Methanation of syngas (H2/CO) over the different Ni-based catalysts, Fuel 189 (2017) 419-427. [19] F. Wang, M. Wei, D.G. Evans, X. Duan, CeO2-based heterogeneous catalysts toward catalytic conversion of CO2, J. Mater. Chem. A 4 (16) (2016) 5773-5783. [20] J. Liu, D.M. Cui, J. Yu, F.B. Su, G.W. Xu, Performance characteristics of fluidized bed syngas methanation over Ni-Mg/Al2O3 catalyst, Chin. J. Chem. Eng. 23 (1) (2015) 86-92. [21] X. Yang, J.W. Da, H.T. Yu, H. Wang, Characterization and performance evaluation of Ni-based catalysts with Ce promoter for methane and hydrocarbons steam reforming process, Fuel 179 (2016) 353-361. [22] M.Y. Ding, J.L. Tu, Q. Zhang, M.L. Wang, N. Tsubaki, T.J. Wang, L.L. Ma, Enhancement of methanation of bio-syngas over CeO2-modified Ni/Al2O3 catalysts, Biomass Bioenergy 85 (2016) 12-17. [23] S. Abate, C. Mebrahtu, E. Giglio, F. Deorsola, S. Bensaid, S. Perathoner, R. Pirone, G. Centi, Catalytic performance of γ-Al2O3-ZrO2-TiO2-CeO2 composite oxide supported Ni-based catalysts for CO2 methanation, Ind. & Eng. Chem. Res. 55 (2016) 4451-4460. [24] J. Guilera, J. del Valle, A. Alarcon, J.A. Diaz, T. Andreu, Metal-oxide promoted Ni/Al2O3 as CO2 methanation micro-size catalysts, J. CO2 Util. 30 (2019) 11-17. [25] M.L. Ang, U. Oemar, E.T. Saw, L. Mo, Y. Kathiraser, B.H. Chia, S. Kawi, Highly active Ni/xNa/CeO2 catalyst for the water-gas shift reaction: effect of sodium on methane suppression, ACS Catal. 4 (9) (2014) 3237-3248. [26] R.D. Alli, R.F. Zhou, M. Mohamedali, N. Mahinpey, Effect of thermal treatment conditions on the stability of MOF-derived Ni/CeO2 catalyst for dry reforming of methane, Chem. Eng. J. 466 (2023) 143242. [27] M. Barreau, D. Salusso, J. Li, J.M. Zhang, E. Borfecchia, K. Sobczak, L. Braglia, J.J. Gallet, P. Torelli, H. Guo, S. Lin, S. Zafeiratos, Ionic nickel embedded in ceria with high specific CO2 methanation activity, Angew. Chem. Int. Ed Engl. 62 (25) (2023) e202302087. [28] F.G. Wang, K.H. Han, W.S. Yu, L. Zhao, Y. Wang, X.J. Wang, H. Yu, W.D. Shi, Low temperature CO2 reforming with methane reaction over CeO2-modified Ni@SiO2 catalysts, ACS Appl. Mater. Interfaces 12 (31) (2020) 35022-35034. [29] J.H. Lin, C.P. Ma, Q. Wang, Y.F. Xu, G.Y. Ma, J. Wang, H.T. Wang, C.L. Dong, C.H. Zhang, M.Y. Ding, Enhanced low-temperature performance of CO2 methanation over mesoporous Ni/Al2O3-ZrO2 catalysts, Appl. Catal. B Environ. 243 (2019) 262-272. [30] Y.X. Jiang, T.X. Huang, L.H. Dong, Z.Z. Qin, H.B. Ji, Ni/bentonite catalysts prepared by solution combustion method for CO2 methanation, Chin. J. Chem. Eng. 26 (11) (2018) 2361-2367. [31] A. Jawad, The effects of Fe, Mg, and Pt-doping on the improvement of Ni stabilized on Al2O3-CeO3 catalysts for methane dry reforming, RSC Adv. 13 (47) (2023) 33129-33145. [32] L. Chen, C. Zhang, Y.X. Li, C.R. Chang, C. He, Q. Lu, Y.S. Yu, P.G. Duan, Z.X. Zhang, R. Luque, Hierarchically hollow MnO2@CeO2 heterostructures for NO oxidation: remarkably promoted activity and SO2 tolerance, ACS Catal. 11 (17) (2021) 10988-10996. [33] M. Jiang, X.P. Chen, L.L. Wang, J.Z. Liang, X.J. Wei, W.J. Nong, Anchoring single Ni atoms on CeO2 nanospheres as an efficient catalyst for the hydrogenolysis of lignin to aromatic monomers, Fuel 324 (2022) 124499. [34] R. Boppella, Y. Kim, K.A. Joshi Reddy, I. Song, Y. Eom, E. Sim, T.K. Kim, Synergistic electronic structure modulation in single-atomic Ni sites dispersed on Ni nanoparticles encapsulated in N-rich carbon nanotubes synthesized at low temperature for efficient CO2 electrolysis, Appl. Catal. B Environ. Energy 345 (2024) 123699. [35] G. Garbarino, C.Y. Wang, T. Cavattoni, E. Finocchio, P. Riani, M. Flytzani-Stephanopoulos, G. Busca, A study of Ni/La-Al2O3 catalysts: a competitive system for CO2 methanation, Appl. Catal. B Environ. 248 (2019) 286-297. [36] R. Ye, L. Ma, X. Hong, T.R. Reina, W. Luo, L. Kang, G. Feng, R. Zhang, M. Fan, R. Zhang, J. Liu, Boosting low-temperature CO2 hydrogenation over Ni-based catalysts by tuning strong metal-support interactions, Angew. Chem. Int. Ed Engl. 63 (3) (2024) e202317669. [37] P. Hongmanorom, J. Ashok, P. Chirawatkul, S. Kawi, Interfacial synergistic catalysis over Ni nanoparticles encapsulated in mesoporous ceria for CO2 methanation, Appl. Catal. B Environ. 297 (2021) 120454. [38] F.Y. Hu, R.P. Ye, C.K. Jin, D. Liu, X.H. Chen, C. Li, K.H. Lim, G.Q. Song, T.C. Wang, G. Feng, R.B. Zhang, S. Kawi, Ni nanoparticles enclosed in highly mesoporous nanofibers with oxygen vacancies for efficient CO2 methanation, Appl. Catal. B Environ. 317 (2022) 121715. [39] X. Liao, Y. Zhang, M. Hill, X. Xia, Y.X. Zhao, Z. Jiang, Highly efficient Ni/CeO2 catalyst for the liquid phase hydrogenation of maleic anhydride, Appl. Catal. A Gen. 488 (2014) 256-264. [40] Z.W. Hao, J.D. Shen, S.X. Lin, X.Y. Han, X. Chang, J. Liu, M.S. Li, X.B. Ma, Decoupling the effect of Ni particle size and surface oxygen deficiencies in CO2 methanation over ceria supported Ni, Appl. Catal. B Environ. 286 (2021) 119922. [41] S.X. Lin, Z.H. Li, M.S. Li, Tailoring metal-support interactions via tuning CeO2 particle size for enhancing CO2 methanation activity over Ni/CeO2 catalysts, Fuel 333 (2023) 126369. [42] D.X. qin, D.B. Xie, H.P. Zheng, Z.W. Li, J.H. Tang, Z.J. Wei, In-situ FTIR study of CO2 adsorption and methanation mechanism over bimetallic catalyst at low temperature, Catal. Lett. 151 (10) (2021) 2894-2905. [43] Z.X. Chang, F. Yu, Z.S. Liu, Z.J. Wang, J.B. Li, B. Dai, J.L. Zhang, Ni-Al mixed metal oxide with rich oxygen vacancies: CO methanation performance and density functional theory study, Chin. J. Chem. Eng. 46 (2022) 73-83. [44] J.B. Tian, P. Zheng, T.F. Zhang, Z.N. Han, W.Q. Xu, F.N. Gu, F. Wang, Z.G. Zhang, Z.Y. Zhong, F.B. Su, G.W. Xu, CO2 methanation over Ni nanoparticles inversely loaded with CeO2 and Cr2O3: catalytic functions of metal oxide/Ni interfaces, Appl. Catal. B Environ. 339 (2023) 123121. [45] Y.T. Pan, X.Y. Han, X. Chang, H. Zhang, X.H. Zi, Z.W. Hao, J.Y. Chen, Z.J. Lin, M.S. Li, X.B. Ma, Enhanced low-temperature CO2 methanation over bimetallic Ni-Ru catalysts, Ind. Eng. Chem. Res. 62 (2023) 4344-4355. [46] S.M. Lee, Y. Lee, D. Moon, J. Ahn, D. Nguyen, S. Chang, S.S. Kim, Reaction mechanism and catalytic impact of Ni/CeO2-x catalyst for low-temperature CO2 methanation, Ind. Eng. Chem. Res. 58 (2019) 8656-8662,. [47] S.J. Fu, K.Y. You, Z.P. Chen, T.B. Liu, Q. Wang, F.F. Zhao, Q.H. Ai, P.L. Liu, H.A. Luo, Ultrasound-assisted co-precipitation synthesis of mesoporous Co3O4-CeO2 composite oxides for highly selective catalytic oxidation of cyclohexane, Front. Chem. Sci. Eng. 16 (8) (2022) 1211-1223. [48] F. Jiang, S.S. Wang, B. Liu, J. Liu, L. Wang, Y. Xiao, Y.B. Xu, X.H. Liu, Insights into the influence of CeO2Crystal facet on CO2Hydrogenation to methanol over Pd/CeO2Catalysts, ACS Catal. 10 (19) (2020) 11493-11509. [49] S.X. Lin, Z.W. Hao, J.D. Shen, X. Chang, S.Y. Huang, M.S. Li, X.B. Ma, Enhancing the CO2 methanation activity of Ni/CeO2 via activation treatment-determined metal-support interaction, J. Energy Chem. 59 (2021) 334-342. [50] Z.L. He, W.X. Que, J. Chen, Y.C. He, G.F. Wang, Surface chemical analysis on the carbon-doped mesoporous TiO2 photocatalysts after post-thermal treatment: XPS and FTIR characterization, J. Phys. Chem. Solids 74 (7) (2013) 924-928. [51] C. Heine, B.A.J. Lechner, H. Bluhm, M. Salmeron, Recycling of CO2: probing the chemical state of the Ni(111) surface during the methanation reaction with ambient-pressure X-ray photoelectron spectroscopy, J. Am. Chem. Soc. 138 (40) (2016) 13246-13252. [52] L.P.L. Goncalves, J. Mielby, O.S.G.P. Soares, J.P.S. Sousa, D.Y. Petrovykh, O.I. Lebedev, M.F.R. Pereira, S. Kegnaes, Y.V. Kolen’ko, In situ investigation of the CO2 methanation on carbon/ceria-supported Ni catalysts using modulation-excitation DRIFTS, Appl. Catal. B Environ. 312 (2022) 121376. [53] X.L. Xu, L. Liu, Y.Y. Tong, X.Z. Fang, J.W. Xu, D.E. Jiang, X. Wang, Facile Cr3+-doping strategy dramatically promoting Ru/CeO2 for low-temperature CO2 methanation: unraveling the roles of surface oxygen vacancies and hydroxyl groups, ACS Catal. 11 (9) (2021) 5762-5775. [54] Y.G. Zhao, Y. Yan, C.Y. Liu, D.T. Zhang, D. Wang, A. Ispas, A. Bund, B. Du, Z.D. Zhang, P. Schaaf, X.Y. Wang, Plasma-assisted fabrication of molecularly imprinted NiAl-LDH layer on Ni nanorod arrays for glyphosate detection, ACS Appl. Mater. Interfaces 14 (31) (2022) 35704-35715. [55] K. Feng, J.M. Tian, M. Guo, Y.N. Wang, S.H. Wang, Z.Y. Wu, J.P. Zhang, L. He, B.H. Yan, Experimentally unveiling the origin of tunable selectivity for CO2 hydrogenation over Ni-based catalysts, Appl. Catal. B Environ. 292 (2021) 120191. [56] W.L. Vrijburg, G. Garbarino, W. Chen, A. Parastaev, A. Longo, E.A. Pidko, E.J.M. Hensen, Ni-Mn catalysts on silica-modified alumina for CO2 methanation, J. Catal. 382 (2020) 358-371. [57] F.Y. Hu, C.K. Jin, R.D. Wu, C. Li, G.Q. Song, T.Z.H. Gani, K.H. Lim, W. Guo, T.C. Wang, S.M. Ding, R.P. Ye, Z.H. Lu, G. Feng, R.B. Zhang, S. Kawi, Enhancement of hollow Ni/CeO2-Co3O4 for CO2 methanation: from CO2 adsorption and activation by synergistic effects, Chem. Eng. J. 461 (2023) 142108. [58] Y.W. Zhou, Y.X. Jiang, Z.Z. Qin, Q.R. Xie, H.B. Ji, Influence of Zr, Ce, and La on Co3O4 catalyst for CO2 methanation at low temperature, Chin. J. Chem. Eng. 26 (4) (2018) 768-774. [59] C.S. Chen, C.S. Budi, H.C. Wu, D. Saikia, H.M. Kao, Size-tunable Ni nanoparticles supported on surface-modified, cage-type mesoporous silica as highly active catalysts for CO2 hydrogenation, ACS Catal. 7 (12) (2017) 8367-8381. [60] C. Italiano, J. Llorca, L. Pino, M. Ferraro, V. Antonucci, A. Vita, CO and CO2 methanation over Ni catalysts supported on CeO2, Al2O3 and Y2O3 oxides, Appl. Catal. B Environ. 264 (2020) 118494. [61] T.S. Galhardo, A.H. Braga, B.H. Arpini, J. Szanyi, R.V. Goncalves, B.F. Zornio, C.R. Miranda, L.M. Rossi, Optimizing active sites for high CO selectivity during CO2 hydrogenation over supported nickel catalysts, J. Am. Chem. Soc. 143 (11) (2021) 4268-4280. [62] B. Sun, J.G. Wang, M. Chen, H.H. Sun, X.T. Wang, Y. Men, Boosting acetone oxidation performance over mesocrystal MxCe1-xO2 (M=Ni, Cu, Zn) solid solution within hollow spheres by tailoring transition-metal cations, Mater. Chem. Phys. 293 (2023) 126925. [63] Z.H. Yu, N. Ji, X.Y. Li, R. Zhang, Y.N. Qiao, J. Xiong, J. Liu, X.B. Lu, Kinetics driven by hollow nanoreactors: an opportunity for controllable catalysis, Angew. Chem. Int. Ed Engl. 62 (3) (2023) e202213612. [64] R. Narayan, U.Y. Nayak, A.M. Raichur, S. Garg, Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances, Pharmaceutics 10 (3) (2018) 118. [65] Z.M. Wang, R.B. Yu, Hollow micro/nanostructured ceria-based materials: synthetic strategies and versatile applications, Adv. Mater. 31 (38) (2019) e1800592. |