Chinese Journal of Chemical Engineering ›› 2024, Vol. 76 ›› Issue (12): 95-104.DOI: 10.1016/j.cjche.2024.08.003
Previous Articles Next Articles
Yinshan Lin1, Haohong Lin1, Jingyuan Liu1, Fengxue Xin1,2, Minjiao Chen1, Weiliang Dong1,2, Xiujuan Qian1, Min Jiang1,2
Received:
2024-06-05
Revised:
2024-07-31
Accepted:
2024-08-11
Online:
2024-09-12
Published:
2024-12-28
Contact:
Xiujuan Qian,E-mail:xiujuanqian@njtech.edu.cn
Supported by:
Yinshan Lin1, Haohong Lin1, Jingyuan Liu1, Fengxue Xin1,2, Minjiao Chen1, Weiliang Dong1,2, Xiujuan Qian1, Min Jiang1,2
通讯作者:
Xiujuan Qian,E-mail:xiujuanqian@njtech.edu.cn
基金资助:
Yinshan Lin, Haohong Lin, Jingyuan Liu, Fengxue Xin, Minjiao Chen, Weiliang Dong, Xiujuan Qian, Min Jiang. Insights into constructing a stable and efficient microbial consortium system[J]. Chinese Journal of Chemical Engineering, 2024, 76(12): 95-104.
Yinshan Lin, Haohong Lin, Jingyuan Liu, Fengxue Xin, Minjiao Chen, Weiliang Dong, Xiujuan Qian, Min Jiang. Insights into constructing a stable and efficient microbial consortium system[J]. 中国化学工程学报, 2024, 76(12): 95-104.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2024.08.003
[1] X.Q. Jia, C. Liu, H. Song, M.Z. Ding, J. Du, Q. Ma, Y.J. Yuan, Design, analysis and application of synthetic microbial consortia, Synth. Syst. Biotechnol. 1 (2) (2016) 109-117. [2] X. Qian, L. Chen, Y. Sui, C. Chen, W. Zhang, J. Zhou, W. Dong, M. Jiang, F. Xin, K. Ochsenreither, Biotechnological potential and applications of microbial consortia, Biotechnolo. Adv. 40 (2020) 107500. [3] L.M. Gieg, S.J. Fowler, C. Berdugo-Clavijo, Syntrophic biodegradation of hydrocarbon contaminants, Curr. Opin. Biotechnol. 27 (2014) 21-29. [4] K.E. Duncker, Z.A. Holmes, L.C. You, Engineered microbial consortia: strategies and applications, Microb. Cell Fact. 20 (1) (2021) 211. [5] R. Naseema Rasheed, A. Pourbakhtiar, M. Mehdizadeh Allaf, M. Baharlooeian, N. Rafiei, H. Alishah Aratboni, J.R. Morones-Ramirez, F.V. Winck, Microalgal co-cultivation -recent methods, trends in omic-studies, applications, and future challenges, Front. Bioeng. Biotechnol. 11 (2023)13315. [6] S.R. Scott, M.O. Din, P. Bittihn, L. Xiong, L.S. Tsimring, J. Hasty, A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis, Nat. Microbiol. 2 (2017) 17083. [7] R. Tsoi, F.L. Wu, C. Zhang, S. Bewick, D. Karig, L.C. You, Metabolic division of labor in microbial systems, PNAS 115 (10) (2018) 2526-2531. [8] C.E. Lawson, W.R. Harcombe, R. Hatzenpichler, S.R. Lindemann, F.E. Loffler, M.A. O’Malley, H. Garcia Martin, B.F. Pfleger, L. Raskin, O.S. Venturelli, D.G. Weissbrodt, D.R. Noguera, K.D. McMahon, Common principles and best practices for engineering microbiomes, Nat. Rev. Microbiol. 17 (12) (2019) 725-741. [9] J.K. Jansson, K.S. Hofmockel, The soil microbiome-from metagenomics to metaphenomics, Curr. Opin. Microbiol. 43 (2018) 162-168. [10] M.K. Nobu, T. Narihiro, C. Rinke, Y. Kamagata, S.G. Tringe, T. Woyke, W.T. Liu, Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor, ISME J. 9 (8) (2015) 1710-1722. [11] K. Papenfort, B.L. Bassler, Quorum sensing signal-response systems in Gram-negative bacteria, Nat. Rev. Microbiol. 14 (2016) 576-588. [12] Y. Jiang, R. Wu, W. Zhang, F. Xin, M. Jiang, Construction of stable microbial consortia for effective biochemical synthesis, Trends Biotechnol. 41 (11) (2023) 1430-1441. [13] N.E. Grandel, K. Reyes Gamas, M.R. Bennett, Control of synthetic microbial consortia in time, space, and composition, Trends Microbiol. 29 (12) (2021) 1095-1105. [14] R.E. Ley, D.A. Peterson, J.I. Gordon, Ecological and evolutionary forces shaping microbial diversity in the human intestine, Cell 124 (4) (2006) 837-848. [15] R.L. Shahab, S. Brethauer, J.S. Luterbacher, M.H. Studer, Engineering of ecological niches to create stable artificial consortia for complex biotransformations, J. Plant Physiol. 62 (2020) 129-136. [16] M.A. Eiteman, S.A. Lee, R. Altman, E. Altman, A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose, Biotechnol. Bioeng. 102 (3) (2009) 822-827. [17] T.C. Chappell, N.U. Nair, Co-utilization of hexoses by a microconsortium of sugar-specific E. coli strains, Biotechnol. Bioeng. 114 (10) (2017) 2309-2318. [18] J. Wang, X. Lu, H. Ying, W. Ma, S. Xu, X. Wang, K. Chen, P. Ouyang, A novel process for cadaverine bio-production using a consortium of two engineered Escherichia coli, Front. Microbiol. 9 (2018) 1312. [19] Z. Wen, R. Ledesma-Amaro, M. Lu, Y. Jiang, S. Gao, M. Jin, S. Yang, Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial Clostridium community, Cell. Mol. Immunol. 117 (7) (2020) 2008-2022. [20] H. Park, A. Patel, K.A. Hunt, M.A. Henson, R.P. Carlson, Artificial consortium demonstrates emergent properties of enhanced cellulosic-sugar degradation and biofuel synthesis, NPJ Biofilms Microbiomes 6 (2020) 59. [21] J.J. Minty, M.E. Singer, S.A. Scholz, C.H. Bae, J.H. Ahn, C.E. Foster, J.C. Liao, X.N. Lin, Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass, Proc. Natl. Acad. Sci. USA 110 (36) (2013) 14592-14597. [22] E. Sgobba, A.K. Stumpf, M. Vortmann, N. Jagmann, M. Krehenbrink, M.E. Dirks-Hofmeister, B. Moerschbacher, B. Philipp, V.F. Wendisch, Synthetic Escherichia coli-Corynebacterium glutamicum consortia for l-lysine production from starch and sucrose, Bioresour. Technol. 260 (2018) 302-310. [23] R.L. Shahab, J.S. Luterbacher, S. Brethauer, M.H. Studer, Consolidated bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consortium, Biotechnol. Bioeng. 115 (5) (2018) 1207-1215. [24] M. Pan, Y. Wang, J.O. Kromer, X. Zhu, M.K.T.H. Lin, I. Angelidaki, A coculture of photoautotrophs and hydrolytic heterotrophs enables efficient upcycling of starch from wastewater toward biomass-derived products: synergistic interactions impacting metabolism of the consortium, Environ. Sci. Technol. 57 (41) (2023) 15523-15532. [25] J.S. Lu, Y. Lv, Y.J. Jiang, M. Wu, B. Xu, W.M. Zhang, J. Zhou, W.L. Dong, F.X. Xin, M. Jiang, Consolidated bioprocessing of hemicellulose-enriched lignocellulose to succinic acid through a microbial cocultivation system, ACS Sustainable Chem. Eng. 8 (24) (2020) 9035-9045. [26] M. Ziesack, T. Gibson, J.K.W. Oliver, A.M. Shumaker, B.B. Hsu, D.T. Riglar, T.W. Giessen, N.V. DiBenedetto, L. Bry, J.C. Way, P.A. Silver, G.K. Gerber, Engineered interspecies amino acid cross-feeding increases population evenness in a synthetic bacterial consortium, mSystems 4 (4) (2019) e00352-e00319. [27] A. Pascual-Garcia, S. Bonhoeffer, T. Bell, Metabolically cohesive microbial consortia and ecosystem functioning, Phil. Trans. R. Soc. B 375 (1798) (2020) 20190245. [28] S. Pande, H. Merker, K. Bohl, M. Reichelt, S. Schuster, L.F. de Figueiredo, C. Kaleta, C. Kost, Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria, ISME J. 8 (5) (2014) 953-962. [29] Y. Liu, M.Z. Ding, W. Ling, Y. Yang, X. Zhou, B.Z. Li, T. Chen, Y. Nie, M.X. Wang, B.X. Zeng, X. Li, H. Liu, B.D. Sun, H.M. Xu, J.M. Zhang, Y. Jiao, Y.N. Hou, H. Yang, S.J. Xiao, Q.C. Lin, X.Z. He, W.J. Liao, Z.Q. Jin, Y.F. Xie, B.F. Zhang, T.Y. Li, X. Lu, J.B. Li, F. Zhang, X.L. Wu, H. Song, Y.J. Yuan, A three-species microbial consortium for power generation, Energy Environ. Sci. 10 (7) (2017) 1600-1609. [30] Z. Sun, T. Koffel, S.M. Stump, G.M. Grimaud, C.A. Klausmeier, Microbial cross-feeding promotes multiple stable states and species coexistence, but also susceptibility to cheaters, J. Theor. Biol. 465 (2019) 63-77. [31] C.M. Xu, H.M. Yu, Insights into constructing a stable and efficient microbial consortium, Chin. J. Chem. Eng. 30 (2021) 112-120. [32] H. Akdemir, Y.X. Liu, L. Zhuang, H.R. Zhang, M.A. Koffas, Utilization of microbialcocultures for converting mixed substrates to valuable bioproducts, Curr. Opin. Microbiol. 68 (2022) 102157. [33] L.C. You, R.S. Cox, R. Weiss, F.H. Arnold, Programmed population control by cell-cell communication and regulated killing, Nature 428 (2004) 868-871. [34] C.V. Dinh, X.Y. Chen, K.L.J. Prather, Development of a quorum-sensing based circuit for control of coculture population composition in a naringenin production system, ACS Synth. Biol. 9 (3) (2020) 590-597. [35] A. Shrestha, A. Schikora, AHL-priming for enhanced resistance as a tool in sustainable agriculture, FEMS Microbiol. Ecol. 96 (12) (2020) 12226. [36] M.B. Miller, B.L. Bassler, Quorum sensing in bacteria, Annu. Rev. Microbiol. 55 (2001) 165-199. [37] K. Li, C. Ma, X. Zhou, C. Xiong, B. Wang, Y. Wang, F. Liu, Regulatory effects of diverse DSF family quorum-sensing signals in plant-associated bacteria, Mol. Plant Microbe Interact. 37 (1) (2024) 6-14. [38] L. Li, Y. Pan, S. Zhang, T. Yang, Z. Li, B. Wang, H. Sun, M. Zhang, X. Li, Quorum sensing: cell-to-cell communication in Saccharomyces cerevisiae, Front. Microbiol. 14 (2023) 1250151. [39] F. Wu, D.J. Menn, X. Wang, Quorum-sensing crosstalk-driven synthetic circuits: from unimodality to trimodality, Chem. Biol. 21 (12) (2014) 1629-1638. [40] S.R. Scott, J. Hasty, Quorum sensing communication modules for microbial consortia, ACS Synth. Biol. 5 (9) (2016) 969-977. [41] L. Wondraczek, G. Pohnert, F.H. Schacher, A. Kohler, M. Gottschaldt, U.S. Schubert, K. Kusel, A.A. Brakhage, Artificial microbial Arenas: materials for observing and manipulating microbial consortia, Adv Mater 31 (24) (2019) e1900284. [42] S. Ben Said, R. Tecon, B. Borer, D. Or, The engineering of spatially linked microbial consortia - potential and perspectives, Curr. Opin. Biotechnol. 62 (2020) 137-145. [43] K. Nagy, Abraham A, J.E. Keymer, P. Galajda, Application of microfluidics in experimental ecology: the importance of being spatial, Front. Microbiol. 9 (2018) 496. [44] W. Weber, M. Daoud-El Baba, M. Fussenegger, Synthetic ecosystems based on airborne inter- and intraKingdom communication, Proc. Natl. Acad. Sci. U. S. A. 104 (25) (2007) 10435-10440. [45] H.J. Kim, J.Q. Boedicker, J.W. Choi, R.F. Ismagilov, Defined spatial structure stabilizes a synthetic multispecies bacterial community, Proc. Natl. Acad. Sci. U. S. A. 105 (47) (2008) 18188-18193. [46] A. Burmeister, A. Grunberger, Microfluidic cultivation and analysis tools for interaction studies of microbial co-cultures, Curr. Opin. Biotechnol. 62 (2020) 106-115. [47] A. Burmeister, F. Hilgers, A. Langner, C. Westerwalbesloh, Y. Kerkhoff, N. Tenhaef, T. Drepper, D. Kohlheyer, E. von Lieres, S. Noack, A. Grunberger, A microfluidic co-cultivation platform to investigate microbial interactions at defined microenvironments, Lab Chip 19 (1) (2019) 98-110. [48] S. Ben Said, D. Or, Synthetic microbial ecology: engineering habitats for modular consortia, Front. Microbiol. 8 (2017) 1125. [49] H. Kim, B.S. Jeon, A. Pandey, B.I. Sang, New coculture system of Clostridium spp. and Megasphaera hexanoica using submerged hollow-fiber membrane bioreactors for caproic acid production, Bioresour. Technol. 270 (2018) 498-503. [50] S. Jeong, T.G. Kim, Development of a novel methanotrophic process with the helper micro-organism Hyphomicrobium sp. NM3, J. Appl. Microbiol. 126 (2) (2019) 534-544. [51] J.S. Lu, W.F. Peng, Y. Lv, Y.J. Jiang, B. Xu, W.M. Zhang, J. Zhou, W.L. Dong, F.X. Xin, M. Jiang, Application of cell immobilization technology in microbial cocultivation systems for biochemicals production, Ind. Eng. Chem. Res. 59 (39) (2020) 17026-17034. [52] R. Diez-Antolinez, M. Hijosa-Valsero, A.I. Paniagua-Garcia, J. Garita-Cambronero, X. Gomez, Yeast screening and cell immobilization on inert supports for ethanol production from cheese whey permeate with high lactose loads, PLoS One 13 (12) (2018) e0210002. [53] S.A. Covarrubias, L.E. de-Bashan, M. Moreno, Y. Bashan, Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae, Appl. Microbiol. Biotechnol. 93 (6) (2012) 2669-2680. [54] N. Fu, P. Peiris, J. Markham, J. Bavor, A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/xylose mixtures, Enzyme Microb. Technol. 45 (3) (2009) 210-217. [55] W.S. Lee, I.C. Chen, C.H. Chang, S.S. Yang, Bioethanol production from sweet potato by co-immobilization of saccharolytic molds and Saccharomyces cerevisiae, Renew. Energy 39 (1) (2012) 216-222. [56] J.C. Duarte, J.A.R. Rodrigues, P.J.S. Moran, G.P. Valenca, J.R. Nunhez, Effect of immobilized cells in calcium alginate beads in alcoholic fermentation, AMB Express 3 (1) (2013) 31. [57] T.G. Johnston, S.F. Yuan, J.M. Wagner, X.N. Yi, A. Saha, P. Smith, A. Nelson, H.S. Alper, Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation, Nat. Commun. 11 (2020) 563. [58] Z.J. Dai, A.J. Lee, S. Roberts, T.A. Sysoeva, S.Q. Huang, M. Dzuricky, X.Y. Yang, X. Zhang, Z.H. Liu, A. Chilkoti, L.C. You, Versatile biomanufacturing through stimulus-responsive cell-material feedback, Nat. Chem. Biol. 15 (2019) 1017-1024. [59] Y. Chen, J. Ge, S. Wang, H. Su, Insight into formation and biological characteristics of Aspergillus tubingensis-based aerobic granular sludge (AT-AGS) in wastewater treatment, Sci Total Environ 739 (2020) 140128. [60] R.L. Shahab, S. Brethauer, M.P. Davey, A.G. Smith, S. Vignolini, J.S. Luterbacher, M.H. Studer, A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose, Science 369 (6507) (2020) eabb1214. [61] J.L. Connell, E.T. Ritschdorff, M. Whiteley, J.B. Shear, 3D printing of microscopic bacterial communities, Proc. Natl. Acad. Sci. U. S. A. 110 (46) (2013) 18380-18385. [62] R. Krishna Kumar, K.R. Foster, 3D printing of microbial communities: a new platform for understanding and engineering microbiomes, Microb. Biotechnol. 16 (3) (2023) 489-493. [63] M. Mimee, M. Mimee, P. Nadeau, A. Hayward, S. Carim, S. Flanagan, S. Flanagan, L. Jerger, J. Collins, S. McDonnell, R. Swartwout, R.J. Citorik, V. Bulovic, R. Langer, G. Traverso, A.P. Chandrakasan, T.K. Lu, An ingestible bacterial-electronic system to monitor gastrointestinal health, Science 360 (6391) (2018) 915-918. [64] J.L. Terrell, T. Tschirhart, J.P. Jahnke, K. Stephens, Y. Liu, H. Dong, M.M. Hurley, M. Pozo, R. McKay, C.Y. Tsao, H.C. Wu, G. Vora, G.F. Payne, D.N. Stratis-Cullum, W.E. Bentley, Bioelectronic control of a microbial community using surface-assembled electrogenetic cells to route signals, Nat. Nanotechnol. 16 (2021) 688-697. [65] T. Tschirhart, E. Kim, R. McKay, H. Ueda, H.C. Wu, A.E. Pottash, A. Zargar, A. Negrete, J. Shiloach, G.F. Payne, W.E. Bentley, Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling, Nat. Commun. 8 (2017) 14030. [66] N. Bhokisham, E. VanArsdale, K.T. Stephens, P. Hauk, G.F. Payne, W.E. Bentley, A redox-based electrogenetic CRISPR system to connect with and control biological information networks, Nat. Commun. 11 (2020) 2427. [67] Y. Liu, J.Y. Li, T. Tschirhart, J.L. Terrell, E. Kim, C.Y. Tsao, D.L. Kelly, W.E. Bentley, G.F. Payne, Connecting biology to electronics: molecular communication via redox modality, Adv. Healthc. Mater. 6 (24) (2017) e2202564. [68] E. VanArsdale, J. Pitzer, S. Wang, K. Stephens, C.Y. Chen, G.F. Payne, W.E. Bentley, Electrogenetic signal transmission and propagation in coculture to guide production of a small molecule, tyrosine, ACS Synth. Biol. 11 (2) (2022) 877-887. [69] L. Laganenka, V. Sourjik, Autoinducer 2-dependent escherichia coli biofilm formation is enhanced in a dual-species coculture, Appl. Environ. Microbiol. 84 (5) (2018) e02638-e02617. [70] S. Wang, F.O. Aljirafi, G.F. Payne, W.E. Bentley, Excite the unexcitable: engineering cells and redox signaling for targeted bioelectronic control, Curr. Opin. Biotechnol. 85 (2024) 103052. [71] N.S. McCarty, R. Ledesma-Amaro, Synthetic biology tools to engineer microbial communities for biotechnology, Trends Biotechnol 37 (2) (2019) 181-197. [72] K. Stephens, M. Pozo, C.Y. Tsao, P. Hauk, W.E. Bentley, Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition, Nat. Commun. 10 (2019) 4129. [73] R.D. McCardell, S. Huang, L.N. Green, R.M. Murray, Control of bacterial population density with population feedback and molecular sequestration, BioRxiv. 6(2017) 225045. [74] Y. Sun, X. Shi, L.Y. He, Y. Xing, Q.F. Guo, Z.L. Xiu, Y.S. Dong, Biosynthetic profile in the co-culture of aspergillus sydowii and bacillus subtilis to produce novel benzoic derivatives, Microb. Ecol. 85 (4) (2023) 1288-1299. [75] W.T. Kong, D.R. Meldgin, J.J. Collins, T. Lu, Designing microbial consortia with defined social interactions, Nat. Chem. Biol. 14 (2018) 821-829. [76] R. Pan, X. Yang, M. Qiu, W. Jiang, W. Zhang, Y. Jiang, F. Xin, M. Jiang, Construction of coculture system containing Escherichia coli with different microbial species for biochemical production, ACS Synth. Biol. 12 (8) (2023) 2208-2216. [77] O. Tal, R. Bartuv, M. Vetcos, S. Medina, J. Jiang, S. Freilich, NetCom: a network-based tool for predicting metabolic activities of microbial communities based on interpretation of metagenomics data, Microorganisms 9 (9) (2021) 1838. [78] X.L. Li, Z. Zhou, W.N. Li, Y.J. Yan, X.L. Shen, J. Wang, X.X. Sun, Q.P. Yuan, Design of stable and self-regulated microbial consortia for chemical synthesis, Nat. Commun. 13 (2022) 1554. [79] Y.R. Liu, S.Y. Yang, X.Q. Jia, Construction of a “nutrition supply-detoxification” coculture consortium for medium-chain-length polyhydroxyalkanoate production with a glucose-xylose mixture, J. Ind. Microbiol. Biotechnol. 47 (3) (2020) 343-354. [80] Y.T. Ou, S.X. Cao, Y. Zhang, H.J. Zhu, C.Z. Guo, W. Yan, F.X. Xin, W.L. Dong, Y.L. Zhang, M. Narita, Z.Y. Yu, T.P.J. Knowles, Bioprinting microporous functional living materials from protein-based core-shell microgels, Nat. Commun. 14 (2023) 322. [81] G. Izmirlioglu, A. Demirci, Simultaneous saccharification and fermentation of ethanol from potato waste by co-cultures of Aspergillus Niger and Saccharomyces cerevisiae in biofilm reactors, Fuel 202 (2017) 260-270. [82] A.R. Pacheco, M. Moel, D. Segre, Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems, Nat. Commun. 10 (2019) 103. |
[1] | Shabnam Murshid, Gnana Prakash Dhakshinamoorthy. Application of an immobilized microbial consortium for the treatment of pharmaceutical wastewater: Batch-wise and continuous studies [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 391-400. |
[2] | TAO He, ZHONG Wenqi, JIN Baosheng . Comparison of Construction Method for DEM Simulation of Ellipsoidal Particles [J]. Chin.J.Chem.Eng., 2013, 21(7): 800-807. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||