[1] K. Gu, H.Y. Liu, J. Liu, X.F. Yu, T. Shi, J.F. Qiao, Air pollution prediction in mass rallies with a new temporally-weighted sample-based multitask learner, IEEE Trans. Instrum. Meas. 71 (2022) 2505915. [2] H.L. Gai, A.N. Wang, J. Fang, H.H. Lou, D. Chen, X.C. Li, C. Martin, Clean combustion and flare minimization to reduce emissions from process industry, Curr. Opin. Green Sustain. Chem. 23 (2020) 38-45. [3] Y.J. Wang, H. Zhang, H.H. Zhang, X.Y. Kang, X.Y. Xu, R.H. Wang, H.H. Zou, W.W. Chen, D. Pan, F. Lu, P.J. He, Flare exhaust: An underestimated pollution source in municipal solid waste landfills, Chemosphere 325 (2023) 138327. [4] K. Gu, Y.H. Zhang, J.F. Qiao, Ensemble meta-learning for few-shot soot density recognition, IEEE Trans. Ind. Inform. 17 (3) (2021) 2261-2270. [5] N. Guo, K. Gu, J.F. Qiao, Flare soot monitoring based on thermal infrared image processing and attention-based meta-learning, 2021 China Automation Congress (CAC). October 22-24, 2021, Beijing, China. IEEE, (2021) 7098-7103. [6] R. Srinivasarao, K.V.S.G.M. Krishna, Automatic control of soot and unburnt hydro carbons from flares in oil and gas industry, 2014 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE). March 19-21, 2014, Pattaya, Thailand. IEEE, (2014) 1-5. [7] D.H. Chen, A. Alphones, Characterization of the incipient smoke point for steam-/ air-assisted and nonassisted flares, J. Air Waste Manag. Assoc. 69 (1) (2019) 119-130. [8] S.C. Zhang, Q. Guan, Development of an elevated flare monitor using video image processing technique, IOP Conf. Ser.: Earth Environ. Sci. 199 (2018) 032058. [9] M.A. Gagnon, P. Tremblay, S. Savary, P. Lagueux, M. Chamberland, Standoff thermal hyperspectral imaging for flare and smokestack characterization in industrial environments, 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). June 26-28, 2013, Gainesville, FL, USA. IEEE, (2013) 1-4. [10] J.H. Pohl, B.A. Tichenor, J. Lee, R. Payne, Combustion efficiency of flares, Combust. Sci. Technol. 50 (4-6) (1986) 217-231. [11] K. Devesh Singh, P. Gangadharan, T. Dabade, V. Shinde, D. Chen, H.H. Lou, P.C. Richmond, X.C. Li, Parametric study of ethylene flare operations using numerical simulation, Eng. Appl. Comput. Fluid Mech. 8 (2) (2014) 211-228. [12] H.H. Lou, J. Fang, H.L. Gai, R. Xu, S. Lin, A novel zone-based machine learning approach for the prediction of the performance of industrial flares, Comput. Chem. Eng. 162 (2022) 107795. [13] K.D. Singh, P. Gangadharan, D.H. Chen, H.H. Lou, X.C. Li, P. Richmond, Computational fluid dynamics modeling of laboratory flames and an industrial flare, J. Air Waste Manag. Assoc. 1995 64 (11) (2014) 1328-1340. [14] B.P. Maldonado, K. Zaseck, E. Kitagawa, A.G. Stefanopoulou, Closed-loop control of combustion initiation and combustion duration, IEEE Trans. Contr. Syst. Technol. 28 (3) (2020) 936-950. [15] Y. Feng, M. Wu, L.F. Chen, X. Chen, W.H. Cao, S. Du, W. Pedrycz, Hybrid intelligent control based on condition identification for combustion process in heating furnace of compact strip production, IEEE Trans. Ind. Electron. 69 (3) (2022) 2790-2800. [16] Q. Lei, M. Wu, J.H. She, Online optimization of fuzzy controller for coke-oven combustion process based on dynamic just-in-time learning, IEEE Trans. Autom. Sci. Eng. 12 (4) (2015) 1535-1540. [17] Y.Y. Zhou, Q.C. Zhang, H. Wang, P. Zhou, T.Y. Chai, EKF-based enhanced performance controller design for nonlinear stochastic systems, IEEE Trans. Autom. Contr. 63 (4) (2018) 1155-1162. [18] P. Zhou, D.W. Guo, T.Y. Chai, Data-driven predictive control of molten iron quality in blast furnace ironmaking using multi-output LS-SVR based inverse system identification, Neurocomputing 308 (2018) 101-110. [19] Q. Xu, X.T. Yang, C.W. Liu, K. Li, H.H. Lou, J.L. Gossage, Chemical plant flare minimization via plantwide dynamic simulation, Ind. Eng. Chem. Res. 48 (7) (2009) 3505-3512. [20] R.K. Sharma, Y.B. Prasad, V. Harsshbabu, Minimize your refinery flaring, Hydrocarbon Process. 86 (2) (2007) 105-106. [21] K. Gu, Y.H. Zhang, J.F. Qiao, Vision-based monitoring of flare soot, IEEE Trans. Instrum. Meas. 69 (9) (2020) 7136-7145. [22] D.T. Allen, D. Smith, V.M. Torres, F.C. Saldana, Carbon dioxide, methane and black carbon emissions from upstream oil and gas flaring in the United States, Curr. Opin. Chem. Eng. 13 (2016) 119-123. [23] P.J. Prieto, N.R. Cazarez-Castro, L.T. Aguilar, S.L. Cardenas-Maciel, Chattering existence and attenuation in fuzzy-based sliding mode control, Eng. Appl. Artif. Intell. 61 (2017) 152-160. [24] C. Munoz, H. Young, C. Antileo, C. Bornhardt, Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor (SBR), Water Sci. Technol. 60 (10) (2009) 2545-2553. [25] H.G. Han, X.L. Wu, J.F. Qiao, A self-organizing sliding-mode controller for wastewater treatment processes, IEEE Trans. Contr. Syst. Technol. 27 (4) (2019) 1480-1491. [26] A. Mohammadzadeh, S. Ghaemi, A modified sliding mode approach for synchronization of fractional-order chaotic/hyperchaotic systems by using new self-structuring hierarchical type-2 fuzzy neural network, Neurocomputing 191 (2016) 200-213. [27] Y.Q. Han, Y.G. Kao, C.C. Gao, Robust sliding mode control for uncertain discrete singular systems with time-varying delays and external disturbances, Automatica 75 (2017) 210-216. [28] M.X. Yang, X. Zhang, Y.L. Xia, Q.Y. Liu, Q. Zhu, Adaptive neural network-based sliding mode control for a hydraulic rotary drive joint, Comput. Electr. Eng. 102 (2022) 108189. [29] D.P. Li, D.J. Li, Y.J. Liu, S.C. Tong, C.L.P. Philip Chen, Approximation-based adaptive neural tracking control of nonlinear MIMO unknown time-varying delay systems with full state constraints, IEEE Trans. Cybern. 47 (10) (2017) 3100-3109. [30] D.P. Li, Y.J. Liu, S.C. Tong, C.L.P. Philip Chen, D.J. Li, Neural networks-based adaptive control for nonlinear state constrained systems with input delay, IEEE Trans. Cybern. 49 (4) (2019) 1249-1258. [31] D.P. Li, C.L. Philip Chen, Y.J. Liu, S.C. Tong, Neural network controller design for a class of nonlinear delayed systems with time-varying full-state constraints, IEEE Trans. Neural Netw. Learn. Syst. 30 (9) (2019) 2625-2636. [32] J.L. Kong, W.Q. Liu, J.H. Liu, Z.B. Sun. Design and finite element analysis of PZT for three-dimensional Laser scanner in forest area[J].Mechanical Engineering & Automation, (2)(2016)55-57. (in Chinese). [33] M. Gilardi, F. Bisotti, A. Tobiesen, H.K. Knuutila, D. Bonalumi, An approach for VLE model development, validation, and implementation in aspen plus for amine blends in CO2 capture: The HS3 solvent case study, Int. J. Greenh. Gas Contr. 126 (2023) 103911. [34] B.X. Zhou, J.C. Chang, J. Li, J.L. Hong, T. Wang, Z.L. Zhu, L.Q. Zhang, C.Y. Ma, Two-stage gasification process simulation and optimization of pulverized coal for hydrogen-rich production using Aspen plus, Int. J. Hydrog. Energy 49 (2024) 849-860. [35] F. Njuguna, H. Ndiritu, B. Gathitu, M. Hawi, J. Munyalo, Kinetic modeling and optimization of process parameters for gasification of macadamia nutshells with air preheating: A combined use of aspen plus and response surface methodology (RSM), Bioresour. Technol. Rep. 22 (2023) 101477. [36] A.M. Ali, M. Shahbaz, M. Inayat, K. Shahzad, A. Ahmad Al-Zahrani, A.B. Mahpudz, Conversion of municipals waste into syngas and methanol via steam gasification using CaO as sorbent: An aspen plus modelling, Fuel 349 (2023) 128640. [37] Z.J. Wang, Z.W. Mao, J.J. Zhang, Z.N. Jiang, G.Q. Xiong, A temporal correlation micro-visco-elastohydrodynamic lubrication model and its applications on internal combustion engine, Tribol. Int. 178 (2023) 108101. [38] W.J. Li, X. Zhang, R.Q. Liu, S.Y. Xu, S. Xu, Y.H. Lan, Y.Z. Fu, Y. Zhang, Y.A. Feng, W.G. Cao, Thermal decomposition, flame propagation, and combustion reactions behaviours of stearic acid by experiments and molecular dynamic simulation, Chem. Eng. J. 461 (2023) 141906. [39] E. Siswanto, D.B. Darmadi, A.S. Widodo, M. Talice, Enhancement of combustion performances and reduction of combustible species emission using an additional of combustion-reaction of engine, Case Stud. Therm. Eng. 49 (2023) 103328. [40] Y.M. Liu, H. Babaee, P. Givi, H.K. Chelliah, D. Livescu, A.G. Nouri, Skeletal reaction models for methane combustion, Fuel 357 (2024) 129581. [41] L. Wang, Y.F. Liu, J.B. Wang, X.Y. Li, J.Y. Ma, Effect of CO2 and methyl groups reaction kinetics on the ignition and combustion of diesel surrogate fuel: Part Ⅰ. reaction mechanisms, Fuel 351 (2023) 128984. |