Chinese Journal of Chemical Engineering ›› 2025, Vol. 77 ›› Issue (1): 66-80.DOI: 10.1016/j.cjche.2024.09.016
Previous Articles Next Articles
Liqin Tang, Xiang Jin, Bing Gao, Xuechao Gao, Xuehong Gu
Received:
2024-06-24
Revised:
2024-09-21
Accepted:
2024-09-25
Online:
2024-10-19
Published:
2025-01-28
Contact:
Xuechao Gao,E-mail:xuechao.gao@njtech.edu.cn;Xuehong Gu,E-mail:xhgu@njtech.edu.cn
Supported by:
Liqin Tang, Xiang Jin, Bing Gao, Xuechao Gao, Xuehong Gu
通讯作者:
Xuechao Gao,E-mail:xuechao.gao@njtech.edu.cn;Xuehong Gu,E-mail:xhgu@njtech.edu.cn
基金资助:
Liqin Tang, Xiang Jin, Bing Gao, Xuechao Gao, Xuehong Gu. CPAM-assisted synthesis of NaA zeolite membrane on macroporous mullite hollow fiber for ethanol dehydration by pervaporation[J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 66-80.
Liqin Tang, Xiang Jin, Bing Gao, Xuechao Gao, Xuehong Gu. CPAM-assisted synthesis of NaA zeolite membrane on macroporous mullite hollow fiber for ethanol dehydration by pervaporation[J]. 中国化学工程学报, 2025, 77(1): 66-80.
[1] Y. Morigami, M. Kondo, J. Abe, H. Kita, K. Okamoto, The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane, Sep. Purif. Technol. 25(1-3) (2001) 251-260. [2] Z. Wang, Q. Ge, J. Shao, Y. Yan, High performance zeolite LTA pervaporation membranes on ceramic hollow fibers by dipcoating-wiping seed deposition, J. Am. Chem. Soc. 131(20) (2009) 6910-6911. [3] P. Ye, Y.T. Zhang, H.F. Wu, X.H. Gu, Mass transfer simulation on pervaporation dehydration of ethanol through hollow fiber NaA zeolite membranes, AlChE. J. 62(7) (2016) 2468-2478. [4] Y.S. Lin, M.C. Duke, Recent progress in polycrystalline zeolite membrane research, Curr. Opin. Chem. Eng. 2(2) (2013) 209-216. [5] Y.M. Liu, X.R. Wang, Y.T. Zhang, Y. He, X.H. Gu, Scale-up of NaA zeolite membranes on α-Al2O3 hollow fibers by a secondary growth method with vacuum seeding, Chin. J. Chem. Eng. 23(7) (2015) 1114-1122. [6] J.C. Wang, P. Ye, X.C. Gao, Y.T. Zhang, X.H. Gu, Modeling investigation of geometric size effect on pervaporation dehydration through scaled-up hollow fiber NaA zeolite membranes, Chin. J. Chem. Eng. 26(7) (2018) 1477-1484. [7] C.L. Yu, Y.M. Liu, G.L. Chen, X.H. Gu, W.H. Xing, Pretreatment of isopropanol solution from pharmaceutical industry and pervaporation dehydration by NaA zeolite membranes, Chin. J. Chem. Eng. 19(6) (2011) 904-910. [8] C. Zhang, L. Peng, J. Jiang, X.H. Gu, Mass transfer model, preparation and applications of zeolite membranes for pervaporation dehydration: a review, Chin. J. Chem. Eng. 25(11) (2017) 1627-1638. [9] D.Z. Liu, Y.T. Zhang, J. Jiang, X.R. Wang, C. Zhang, X.H. Gu, High-performance NaA zeolite membranes supported on four-channel ceramic hollow fibers for ethanol dehydration, RSC Adv. 5(116) (2015) 95866-95871. [10] Z.Z. Yang, Y.M. Liu, C.L. Yu, X.H. Gu, N.P. Xu, Ball-milled NaA zeolite seeds with submicron size for growth of NaA zeolite membranes, J. Membr. Sci. 392-393(2012) 18-28. [11] M.M. Ji, X.C. Gao, X.R. Wang, Y.T. Zhang, J. Jiang, X.H. Gu, An ensemble synthesis strategy for fabrication of hollow fiber T-type zeolite membrane modules, J. Membr. Sci. 563(2018) 460-469. [12] X. Jin, S.H. Wang, Y.S. Zhao, L. Liu, X.C. Gao, X.H. Gu, Analysis of the gas transport resistance of CO2 and CH4 through ultra-thin DD3R zeolite membrane, J. Membr. Sci. 706(2024) 122929. [13] J. Hedlund, B. Schoeman, J. Sterte, Ultrathin oriented zeolite LTA films, Chem. Commun. (13) (1997) 1193-1194. [14] Y. Martinez Galeano, L. Cornaglia, A.M. Tarditi, NaA zeolite membranes synthesized on top of APTES-modified porous stainless steel substrates, J. Membr. Sci. 512(2016) 93-103. [15] H. Liu, J.Y. Liu, Z. Hong, S.X. Wang, X.C. Gao, X.H. Gu, Preparation of hollow fiber membranes from mullite particles with aid of sintering additives, J. Adv. Ceram. 10(1) (2021) 78-87. [16] X.C. Gao, B. Gao, H. Liu, C. Zhang, Y.T. Zhang, J. Jiang, X.H. Gu, Fabrication of stainless steel hollow fiber supported NaA zeolite membrane by self-assembly of submicron seeds, Sep. Purif. Technol. 234(2020) 116121. [17] H.L. Hong, K.L. Yu, H.B. Liu, R.F. Zhou, W.H. Xing, Industrial-scale 61-channel monolithic silicalite-1 membranes for butane isomer separation, Adv. Membr. 4(2024) 100096. [18] M. Kondo, Tubular-type pervaporation module with zeolite NaA membrane, J. Membr. Sci. 133(1) (1997) 133-141. [19] A.S. Huang, J. Caro, Cationic polymer used to capture zeolite precursor particles for the facile synthesis of oriented zeolite LTA molecular sieve membrane, Chem. Mater. 22(15) (2010) 4353-4355. [20] W.H. Zeng, B.B. Li, H. Li, W. Li, H. Jin, Y.S. Li, Mass produced NaA zeolite membranes for pervaporative recycling of spent N-Methyl-2-Pyrrolidone in the manufacturing process for lithium-ion battery, Sep. Purif. Technol. 228(2019) 115741. [21] N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis, Zeolite membranes-a review and comparison with MOFs, Chem. Soc. Rev. 44(20) (2015) 7128-7154. [22] C.F. Yuan, Q. Liu, H.F. Chen, A.S. Huang, Mussel-inspired polydopamine modification of supports for the facile synthesis of zeolite LTA molecular sieve membranes, RSC Adv. 4(79) (2014) 41982-41988. [23] Z.Z. Shi, Y.T. Zhang, C. Cai, C. Zhang, X.H. Gu, Preparation and characterization of α-Al2O3 hollow fiber membranes with four-channel configuration, Ceram. Int. 41(1) (2015) 1333-1339. [24] J. Gascon, F. Kapteijn, B. Zornoza, V. Sebastian, C. Casado, J. Coronas, Practical approach to zeolitic membranes and coatings: state of the art, opportunities, barriers, and future perspectives, Chem. Mater. 24(15) (2012) 2829-2844. [25] X.C. Gao, J.C. Diniz da Costa, S.K. Bhatia, The transport of gases in a supported mesoporous silica membrane, J. Membr. Sci. 438(2013) 90-104. [26] X.C. Gao, G.Z. Ji, L. Peng, X.H. Gu, L. Chen, Pore-neck resistance to light gases in a microporous BTESE-derived silica: a comparison of membrane and xerogel powder, J. Membr. Sci. 531(2017) 36-46. [27] J. Shao, Z.Y. Zhan, J.G. Li, Z.B. Wang, K. Li, Y.S. Yan, Zeolite NaA membranes supported on alumina hollow fibers: effect of support resistances on pervaporation performance, J. Membr. Sci. 451(2014) 10-17. [28] G.L. Chen, X.T. Ge, Y. Wang, W.H. Xing, Y.Z. Guo, Design and preparation of high permeability porous mullite support for membranes by in situ reaction, Ceram. Int. 41(7) (2015) 8282-8287. [29] L. Mahnicka-Goremikina, R. Svinka, V. Svinka, Influence of ZrO2 and WO3 doping additives on the thermal properties of porous mullite ceramics, Ceram. Int. 44(14) (2018) 16873-16879. [30] A.S. Huang, J. Caro, Facile synthesis of LTA molecular sieve membranes on covalently functionalized supports by using diisocyanates as molecular linkers, J. Mater. Chem. 21(30) (2011) 11424-11429. [31] A. Kulak, Y.J. Lee, Y.S. Park, K.B. Yoon, Orientation-controlled monolayer assembly of zeolite crystals on glass and mica by covalent linkage of surface-bound epoxide and amine groups, Angew. Chem. Int. Ed. 39(5) (2000) 950-953. [32] T.A. Kuzniatsova, M.L. Mottern, W.V. Chiu, Y. Kim, P.K. Dutta, H. Verweij, Synthesis of thin, oriented zeolite A membranes on a macroporous support, Adv. Funct. Mater. 18(6) (2008) 952-958. [33] G.S. Lee, Y.J. Lee, K. Ha, K.B. Yoon, Orientation-controlled monolayer assembly of zeolite crystals on glass using terephthaldicarboxaldehyde as a covalent linker, Tetrahedron 56(36) (2000) 6965-6968. [34] X. Gao, Z. Li, C. Chen, C. Da, L. Liu, S. Tian, G. Ji, The determination of pore shape and interfacial barrier of entry for light gases transport in amorphous TEOS-derived silica: a finite element method, ACS Appl. Mater. Interfaces 13(3) (2021) 4804-4812. [35] X.C. Gao, C. Da, C. Chen, Z.H. Li, X.H. Gu, S.K. Bhatia, The induced orientation effect of linear gases during transport in a NaA zeolite membrane modified by alkali lignin, J. Membr. Sci. 620(2021) 118971. [36] Q. Wang, L. Liu, C. Liu, J.S. Song, X.C. Gao, Size effect in determining the water diffusion rate in carbon nanotubes, J. Mol. Liq. 334(2021) 116034. [37] X.C. Gao, B. Gao, X.C. Wang, R. Shi, R. Ur Rehman, X.H. Gu, The influence of cation treatments on the pervaporation dehydration of NaA zeolite membranes prepared on hollow fibers, Processes 6(6) (2018) 70. [38] L.N. Nguyen, H.P. Vu, Q. Fu, M. Abu Hasan Johir, I. Ibrahim, M. Mofijur, L. Labeeuw, M. Pernice, P.J. Ralph, L.D. Nghiem, Synthesis and evaluation of cationic polyacrylamide and polyacrylate flocculants for harvesting freshwater and marine microalgae, Chem. Eng. J. 433(2022) 133623. [39] J. Ma, J. Shao, Z.B. Wang, Y.S. Yan, Preparation of zeolite NaA membranes on macroporous alumina supports by secondary growth of gel layers, Ind. Eng. Chem. Res. 53(14) (2014) 6121-6130. [40] J.Y. Chong, B. Wang, K. Li, Water transport through graphene oxide membranes: the roles of driving forces, Chem. Commun. 54(20) (2018) 2554-2557. [41] R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science 335(6067) (2012) 442-444. [42] M. Kazemimoghadam, A. Pak, T. Mohammadi, Dehydration of water/1-1-dimethylhydrazine mixtures by zeolite membranes, Microporous Mesoporous Mater. 70(1-3) (2004) 127-134. [43] X.X. Chen, J.Q. Wang, D.H. Yin, J.H. Yang, J.M. Lu, Y. Zhang, Z. Chen, High-performance zeolite T membrane for dehydration of organics by a new varying temperature hot-dip coating method, AlChE. J. 59(3) (2013) 936-947. |
[1] | Huanxu Teng, Ronghui You, Huanyi Li, Siqi Shao, Qi Zhou, Ying Yang, Ting Wu, Meihua Zhu, Xiangshu Chen, Hidetoshi Kita. Pervaporation performance and characterization of hydrophilic ZSM-5 zeolite membranes for high inorganic acid and inorganic salts [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 27-33. |
[2] | Tong Liu, Hao Sun, Xiangqiong Wang, Jie Li, Zhanquan Zhang, Pei Wu, Naixin Wang, Quanfu An. Hyperbranched polymer hollow-fiber-composite membranes for pervaporation separation of aromatic/aliphatic hydrocarbon mixtures [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 13-22. |
[3] | Meihua Zhu, Xingguo An, Tian Gui, Ting Wu, Yuqin Li, Xiangshu Chen. Effects of ion-exchange on the pervaporation performance and microstructure of NaY zeolite membrane [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 176-181. |
[4] | Qinggang Xu, Yasen Dai, Qing Zhao, Zhengrun Chen, Peizhe Cui, Zhaoyou Zhu, Yinglong Wang, Jun Gao, Yixin Ma. Economy, environmental assessment and energy conservation for separation of isopropanol/diisopropyl ether/water multi-azeotropes via extractive distillation coupled pervaporation process [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 353-363. |
[5] | Hongru Zhang, Yusen Chen, Haiyang Cheng, Yangyang Wang, Peizhe Cui, Shiqing Zheng, Zhaoyou Zhu, Yinglong Wang, Yanyue Lu, Jun Gao. Comprehensive analysis on the economy and energy demand of pressure-swing distillation and pervaporation for separating waste liquid containing multiple components [J]. Chinese Journal of Chemical Engineering, 2023, 63(11): 12-20. |
[6] | Yunyun Wan, Lulu Yao, Peng Cui. Graphene quantum dots doped poly(vinyl alcohol) hybrid membranes for desalination via pervaporation [J]. Chinese Journal of Chemical Engineering, 2023, 63(11): 226-234. |
[7] | Monique Juna L. Leite, Ingrid Ramalho Marques, Mariane Carolina Proner, Pedro H.H. Araújo, Alan Ambrosi, Marco Di Luccio. Catalytically active membranes for esterification: A review [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 142-154. |
[8] | Guorong Wu, Qiangwen Fan, Wenjie Sun, Zhiwu Yu, Zhiqian Jia, Jianguo Ma. Regulatable pervaporation performance of Zn-MOFs/polydimethylsiloxane mixed matrix pervaporation membranes [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 312-318. |
[9] | Xia Zhan, Xueying Zhao, Zhongyong Gao, Rui Ge, Juan Lu, Luying Wang, Jiding Li. Breakthroughs on tailoring membrane materials for ethanol recovery by pervaporation [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 19-36. |
[10] | Yanxian Zhang, Yijing Tang, Dong Zhang, Yonglan Liu, Jian He, Yung Chang, Jie Zheng. Amyloid cross-seeding between Aβ and hIAPP in relation to the pathogenesis of Alzheimer and type 2 diabetes [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 225-235. |
[11] | Xiaopan Chen, Meihua Zhu, Sitong Xiang, Tian Gui, Ting Wu, Yuqin Li, Na Hu, Izumi Kumakiri, Xiangshu Chen, Hidetoshi Kita. Growth process and short chain alcohol separation performance of fluoride-containing NaY zeolite membrane [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 154-159. |
[12] | Kecheng Guan, Gongping Liu, Hideto Matsuyama, Wanqin Jin. Graphene-based membranes for pervaporation processes [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1755-1766. |
[13] | Hao Yang, Hong Wu, Fusheng Pan, Meidi Wang, Zhongyi Jiang, Qifan Cheng, Cheng Huang. Water-selective hybrid membranes with improved interfacial compatibility from mussel-inspired dopamine-modified alginate and covalent organic frameworks [J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 90-97. |
[14] | Asmaa Selim, Andras Jozsef Toth, Daniel Fozer, Eniko Haaz, Nóra Valentínyi, Tibor Nagy, Orsolya Keri, Lászlo Péter Bakos, Imre Miklós Szilágyi, Peter Mizsey. Effect of silver-nanoparticles generated in poly (vinyl alcohol) membranes on ethanol dehydration via pervaporation [J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1595-1607. |
[15] | Peiyao Zheng, Chong Li, Naixin Wang, Jie Li, Quanfu An. The potential of pervaporation for biofuel recovery from fermentation: An energy consumption point of view [J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1296-1306. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 102
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 28
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||