Chinese Journal of Chemical Engineering ›› 2025, Vol. 77 ›› Issue (1): 81-92.DOI: 10.1016/j.cjche.2024.09.018
Previous Articles Next Articles
Yilin Wang1, Shijie Li2, Jianhui Qi1, Hui Li2, Kuihua Han1, Jianli Zhao1
Received:
2024-04-15
Revised:
2024-09-13
Accepted:
2024-09-18
Online:
2024-10-25
Published:
2025-01-28
Contact:
Jianli Zhao,E-mail:sdzhaojl@sdu.edu.cn
Supported by:
Yilin Wang1, Shijie Li2, Jianhui Qi1, Hui Li2, Kuihua Han1, Jianli Zhao1
通讯作者:
Jianli Zhao,E-mail:sdzhaojl@sdu.edu.cn
基金资助:
Yilin Wang, Shijie Li, Jianhui Qi, Hui Li, Kuihua Han, Jianli Zhao. Preparation and characterization of high performance super activated carbon based on coupled coal/sargassum precursors[J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 81-92.
Yilin Wang, Shijie Li, Jianhui Qi, Hui Li, Kuihua Han, Jianli Zhao. Preparation and characterization of high performance super activated carbon based on coupled coal/sargassum precursors[J]. 中国化学工程学报, 2025, 77(1): 81-92.
[1] M. Vijayakumar, A. Bharathi Sankar, D. Sri Rohita, T.N. Rao, M. Karthik, Conversion of biomass waste into high performance supercapacitor electrodes for real-time supercapacitor applications, ACS Sustainable Chem. Eng. 7(20) (2019) 17175-17185. [2] A.M. Abioye, F.N. Ani, Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review, Renew. Sustain. Energy Rev. 52(2015) 1282-1293. [3] J. Deng, M.M. Li, Y. Wang, Biomass-derived carbon: synthesis and applications in energy storage and conversion, Green Chem. 18(18) (2016) 4824-4854. [4] D.X. Guo, X.M. Song, L.C. Tan, H.Y. Ma, W.F. Sun, H.J. Pang, L.L. Zhang, X.M. Wang, A facile dissolved and reassembled strategy towards sandwich-like rGO@NiCoAl-LDHs with excellent supercapacitor performance, Chem. Eng. J. 356(2019) 955-963. [5] W.D. Qiu, H.B. Xiao, M.H. Yu, Y. Li, X.H. Lu, Surface modulation of NiCo2O4 nanowire arrays with significantly enhanced reactivity for ultrahigh-energy supercapacitors, Chem. Eng. J. 352(2018) 996-1003. [6] H. Chen, Y.C. Guo, F. Wang, G. Wang, P.R. Qi, X.H. Guo, B. Dai, F. Yu, An activated carbon derived from tobacco waste for use as a supercapacitor electrode material, N. Carbon Mater. 32(6) (2017) 592-599. [7] K.S. Lee, M.S. Park, J.D. Kim, Nitrogen doped activated carbon with nickel oxide for high specific capacitance as supercapacitor electrodes, Colloids Surf. A Physicochem. Eng. Aspects 533(2017) 323-329. [8] E.E. Miller, Y. Hua, F.H. Tezel, Materials for energy storage: review of electrode materials and methods of increasing capacitance for supercapacitors, J. Energy Storage 20(2018) 30-40. [9] J.Q. Shao, M.Y. Song, G. Wu, Y.H. Zhou, J.F. Wan, X. Ren, F.W. Ma, 3D carbon nanocage networks with multiscale pores for high-rate supercapacitors by flower-like template and in situ coating, Energy Storage Mater. 13(2018) 57-65. [10] S.J. Li, K.H. Han, Y. Gao, M.Y. Zhang, Q. Wang, L.H. Zhang, Synergistic optimization of double layer capacitance and pseudocapacitance of activated carbon by nickel oxide loading, Int. J. Electrochem. Sci. 14(12) (2019) 10775-10789. [11] C. Liu, Q.Q. Ren, S.W. Zhang, B.S. Yin, L.F. Que, L. Zhao, X.L. Sui, F.D. Yu, X.F. Li, D.M. Gu, Z.B. Wang, High energy and power lithium-ion capacitors based on Mn3O4/3D-graphene as anode and activated polyaniline-derived carbon nanorods as cathode, Chem. Eng. J. 370(2019) 1485-1492. [12] Y. Li, J.X. Chen, P.W. Cai, Z.H. Wen, An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation, J. Mater. Chem. A 6(12) (2018) 4948-4954. [13] S.J. Li, M.Y. Zhang, Y. Gao, H. Li, Q. Wang, L.H. Zhang, Preparation of a porous carbon from Enteromorpha prolifera with excellent electrochemical properties, N. Carbon Mater. 36(6) (2021) 1158-1166. [14] Y. Tao, X.Y. Xie, W. Lv, D.M. Tang, D.B. Kong, Z.H. Huang, H. Nishihara, T. Ishii, B.H. Li, D. Golberg, F.Y. Kang, T. Kyotani, Q.H. Yang, Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors, Sci. Rep. 3(2013) 2975. [15] F. Barzegar, A. Bello, J.K. Dangbegnon, N. Manyala, X.H. Xia, Asymmetric supercapacitor based on activated expanded graphite and pinecone tree activated carbon with excellent stability, Appl. Energy 207(2017) 417-426. [16] M. Fujishige, I. Yoshida, Y. Toya, Y. Banba, K.I. Oshida, Y.S. Tanaka, P. Dulyaseree, W. Wongwiriyapan, K. Takeuchi, Preparation of activated carbon from bamboo-cellulose fiber and its use for EDLC electrode material, J. Environ. Chem. Eng. 5(2) (2017) 1801-1808. [17] T. Sesuk, P. Tammawat, P. Jivaganont, K. Somton, P. Limthongkul, W. Kobsiriphat, Activated carbon derived from coconut coir pith as high performance supercapacitor electrode material, J. Energy Storage 25(2019) 100910. [18] C.Y. Xiao, W.L. Zhang, H.B. Lin, Y.X. Tian, X.X. Li, Y.Y. Tian, H.Y. Lu, Modification of a rice husk-based activated carbon by thermal treatment and its effect on its electrochemical performance as a supercapacitor electrode, N. Carbon Mater. 34(4) (2019) 341-348. [19] F.Z. Kong, Y.F. Liu, J. Li, X.L. Wen, J.X. Cheng, Effect of activator addition on the electrochemical performance of petroleum coke-based activated carbon electrode materials, J Uni Sci Tech. Liaoning 4(2023) 12-15. (in Chinese). [20] Z.H. Zhang, Q. Wang, B.Q. Zhang, F.M. Zhang, C.X. Zhang, G.X. Huang, B.L. Xing, Effect of modification on structure and electrochemical properties of coal based activated carbon, Clean Coal Technol 28(2022) 127-136. (in Chinese). [21] B.C. Xue, J.H. Xu, R. Xiao, Synthesis of hierarchically porous carbon with tailored porosity and electrical conductivity derived from hard-soft carbon precursors for enhanced capacitive performance, ACS Sustainable Chem. Eng. 9(47) (2021) 15925-15934. [22] Y.F. Yin, Q.J. Liu, Y.T. Zhao, T.T. Chen, J. Wang, L. Gui, C.Y. Lu, Recent progress and future directions of biomass-derived hierarchical porous carbon: designing, preparation, and supercapacitor applications, Energy Fuels 37(5) (2023) 3523-3554. [23] F. Sun, D.Y. Wu, J.H. Gao, T. Pei, Y.Q. Chen, K.F. Wang, H.P. Yang, G.B. Zhao, Graphitic porous carbon with multiple structural merits for high-performance organic supercapacitor, J. Power Sources 477(2020) 228759. [24] Y.N. Gong, D.L. Li, C.Z. Luo, Q. Fu, C.X. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors, Green Chem. 19(17) (2017) 4132-4140. [25] S.J. Li, J.G. Zhang, J.X. Li, K.H. Han, X.D. Han, C.M. Lu, Preparation and electrochemical property of gulfweed-based super activated carbon for supercapacitor, J. Mater. Eng. 46(7) (2018) 157-164. [26] S.J. Li, T. Xing, Y.L. Wang, P.W. Lu, W.X. Kong, S.N. Li, X.M. Su, X.K. Wei, Pore structure regulation and electrochemical performance characterization of activated carbon for supercapacitors, Front. Energy Res. 9(2021) 680761. [27] Y.Z. Wang, Y.X. Liu, D.H. Wang, C. Wang, L. Guo, T.F. Yi, Free-standing honeycomb-like N doped carbon foam derived from coal tar pitch for high-performance supercapacitor, Appl. Surf. Sci. 506(2020) 145014. [28] J. Abdulsalam, J. Mulopo, B. Oboirien, S. Bada, R. Falcon, Experimental evaluation of activated carbon derived from South Africa discard coal for natural gas storage, Int. J. Coal Sci. Technol. 6(3) (2019) 459-477. [29] Xuemei Lv, Tiankai Zhang, Yunhuan Luo, Yongfa Zhang, Ying Wang, Guojie Zhang, Study on carbon nanotubes and activated carbon hybrids by pyrolysis of coal, J. Anal. Appl. Pyrol. 146(2020) 104717. [30] S. Biloe, V. Goetz, A. Guillot, Optimal design of an activated carbon for an adsorbed natural gas storage system, Carbon 40(8) (2002) 1295-1308. [31] L. Muniandy, F. Adam, A.R. Mohamed, E.P. Ng, The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH, Microporous Mesoporous Mater. 197(2014) 316-323. [32] Y.H. Liu, X.X. Qu, G.X. Huang, B.L. Xing, F.M. Zhang, B.B. Li, C.X. Zhang, Y.J. Cao, 3-dimensional porous carbon with high nitrogen content obtained from Longan shell and its excellent performance for aqueous and all-solid-state supercapacitors, Nanomaterials 10(4) (2020) 808. [33] M. Krol, G. Gryglewicz, J. Machnikowski, KOH activation of pitch-derived carbonaceous materials-effect of carbonization degree, Fuel Process. Technol. 92(1) (2011) 158-165. [34] Y.C. Jiang, Z.F. He, X. Cui, Z.Y. Liu, J.F. Wan, Y.F. Liu, F.W. Ma, Lamellar hierarchical porous carbon prepared from coal tar pitch through a lamellar hard template combined with the precarbonization and activation method for supercapacitors, ACS Appl. Energy Mater. 5(12) (2022) 15199-15210. [35] J.X. Cheng, Z.J. Lu, X.F. Zhao, X.X. Chen, Y.H. Liu, Green needle coke-derived porous carbon for high-performance symmetric supercapacitor, J. Power Sources 494(2021) 229770. [36] X.X. Zuo, K. Chang, J. Zhao, Z.Z. Xie, H.W. Tang, B. Li, Z.R. Chang, Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material, J. Mater. Chem. A 4(1) (2016) 51-58. [37] J.Q. Shao, F.W. Ma, G. Wu, C.C. Dai, W.D. Geng, S.J. Song, J.F. Wan, In-situ MgO (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials, Chem. Eng. J. 321(2017) 301-313. [38] J. Bourke, M. Manley-Harris, C. Fushimi, K. Dowaki, T. Nunoura, M.J. Antal, Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal, Ind. Eng. Chem. Res. 46(18) (2007) 5954-5967. [39] X.K. Yu, Y.X. Shi, H.J. Wang, N.S. Cai, C. Li, A.F. Ghoniem, Using potassium catalytic gasification to improve the performance of solid oxide direct carbon fuel cells: experimental characterization and elementary reaction modeling, J. Power Sources 252(2014) 130-137. [40] B.L. Xing, H. Guo, L.J. Chen, Z.F. Chen, C.X. Zhang, G.X. Huang, W. Xie, J.L. Yu, Lignite-derived high surface area mesoporous activated carbons for electrochemical capacitors, Fuel Process. Technol. 138(2015) 734-742. [41] A. Pozio, M.D. Francesco, A. Cemmi, F. Cardellini, L. Giorgi, Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices, J. Power Sources 105(2) (2002) 165-181. [42] A.K. Mishra, S. Ramaprabhu, Functionalized graphene-based nanocomposites for supercapacitor application, J. Phys. Chem. C 115(29) (2011) 14006-14013. [43] J.H. Xu, C.L. Xia, M. Li, R. Xiao, Porous nitrogen-doped carbons as effective catalysts for oxygen reduction reaction synthesized from cellulose and polyamide, Chemelectrochem 6(22) (2019) 5735-5743. [44] H.X. Sun, B.L. Yang, A. Li, Biomass derived porous carbon for efficient capture of carbon dioxide, organic contaminants and volatile iodine with exceptionally high uptake, Chem. Eng. J. 372(2019) 65-73. [45] C.F. Ding, T.Y. Liu, X.D. Yan, L.B. Huang, S. Ryu, J.L. Lan, Y.H. Yu, W.H. Zhong, X.P. Yang, An ultra-microporous carbon material boosting integrated capacitance for cellulose-based supercapacitors, Nano-Micro Lett. 12(1) (2020) 63. [46] S. Biniak, G. Szymanski, J. Siedlewski, A. Swiatkowski, The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon 35(12) (1997) 1799-1810. [47] Y.P. Zhai, Y.Q. Dou, D.Y. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage, Adv. Mater. Deerfield Beach Fla 23(42) (2011) 4828-4850. [48] X.Y. Zhang, B.K. Sun, X. Fan, H.C. Bai, P. Liang, G.M. Zhao, B.K. Saikia, X.Y. Wei, Building relationships between molecular composition of carbon precursor and capacitance of a hierarchical porous carbon-based supercapacitor, ACS Appl. Energy Mater. 4(1) (2021) 985-995. [49] H. Zhou, B.L. Lv, Y. Xu, D. Wu, Synthesis and electrochemical properties of NiO nanospindles, Mater. Res. Bull. 50(2014) 399-404. [50] X. Zhao, M. Zhang, W. Pan, R. Yang, X.D. Sun, Self-template synthesis of nitrogen-doped hollow carbon nanospheres with rational mesoporosity for efficient supercapacitors, Materials 14(13) (2021) 3619. [51] S.M. Benoy, D. Bhattacharjya, M. Bora, B.K. Saikia, Blowing agent-induced hierarchical porous carbon from low-quality coal for high-performance supercapacitor, ACS Appl. Electron. Mater. 4(12) (2022) 6322-6334. [52] D. Bhattacharjya, J.S. Yu, Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor, J. Power Sources 262(2014) 224-231. [53] H.Y. Sun, S.W. Liu, Q.F. Lu, H.Y. Zhong, Template-synthesis of hierarchical Ni(OH)2 hollow spheres with excellent performance as supercapacitor, Mater. Lett. 128(2014) 136-139. [54] H. Zhang, Z. Zhang, J.D. Luo, X.T. Qi, J. Yu, J.X. Cai, J.C. Wei, Z.Y. Yang, A chemical blowing strategy to fabricate biomass-derived carbon-aerogels with graphene-like nanosheet structures for high-performance supercapacitors, ChemSusChem 12(11) (2019) 2462-2470. [55] D. Qu, M. Zheng, L.G. Zhang, H.F. Zhao, Z.G. Xie, X.B. Jing, R.E. Haddad, H.Y. Fan, Z.C. Sun, Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots, Sci. Rep. 4(2014) 5294. [56] S.M. Pawar, A.I. Inamdar, K.V. Gurav, Y. Jo, H. Kim, J.H. Kim, H. Im, Effect of oxidant on the structural, morphological and supercapacitive properties of nickel hydroxide nanoflakes electrode films, Mater. Lett. 141(2015) 336-339. [57] N. Boonraksa, E. Swatsitang, K. Wongsaprom, Biomass nanoarchitectonics with activated rice husk char for nanoporous carbon as electrode material: enhancing supercapacitor electrochemical performance, J. Non-Cryst. Solids 637(2024) 123064. [58] B.S. Zhu, S.X. Zhai, Facile design and superior electrochemical performance of fluorine doped graphene slice for supercapacitor electrodes, Mater. Lett. 371(2024) 136873. [59] M. Rahaman, M.R. Islam, M.R. Islam, Improved electrochemical performance of defect-induced supercapacitor electrodes based on MnS-incorporated MnO2 nanorods, Nanoscale Adv. 6(16) (2024) 4103-4110. [60] J.T. Li, R. Xiao, M. Li, H.Y. Zhang, S.L. Wu, C.L. Xia, Template-synthesized hierarchical porous carbons from bio-oil with high performance for supercapacitor electrodes, Fuel Process. Technol. 192(2019) 239-249. [61] K. Aruchamy, R. Nagaraj, H.M. Manohara, M.R. Nidhi, D. Mondal, D. Ghosh, S.K. Nataraj, One-step green route synthesis of spinel ZnMn2O4 nanoparticles decorated on MWCNTs as a novel electrode material for supercapacitor, Mater. Sci. Eng. B 252(2020) 114481. [62] F.Y. Liu, Z.X. Wang, H.T. Zhang, L. Jin, X. Chu, B.N. Gu, H.C. Huang, W.Q. Yang, Nitrogen, oxygen and sulfur Co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin, Carbon 149(2019) 105-116. [63] Y.B. Zhai, B.B. Xu, Y. Zhu, R.P. Qing, C. Peng, T.F. Wang, C.T. Li, G.M. Zeng, Nitrogen-doped porous carbon from Camellia oleifera shells with enhanced electrochemical performance, Mater. Sci. Eng., C 61(2016) 449-456. [64] X.J. He, N. Zhao, J.S. Qiu, N. Xiao, M.X. Yu, C. Yu, X.Y. Zhang, M.D. Zheng, Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe2O3 as template and activation agent coupled with KOH activation, J. Mater. Chem. A 1(33) (2013) 9440-9448. [65] H.J. Wang, X.X. Sun, Z.H. Liu, Z.B. Lei, Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes, Nanoscale 6(12) (2014) 6577-6584. [66] F.T. Ran, X.B. Yang, X.Q. Xu, S.W. Li, Y.Y. Liu, L. Shao, Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards high-performance supercapacitor, Chem. Eng. J. 412(2021) 128673. [67] L.F. Chen, X.D. Zhang, H.W. Liang, M.G. Kong, Q.F. Guan, P. Chen, Z.Y. Wu, S.H. Yu, Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors, ACS Nano 6(8) (2012) 7092-7102. [68] L.P. Zheng, B. Tang, X.C. Dai, T. Xing, Y.H. Ouyang, Y. Wang, B.B. Chang, H.B. Shu, X.Y. Wang, High-yield synthesis of N-rich polymer-derived porous carbon with nanorod-like structure and ultrahigh N-doped content for high-performance supercapacitors, Chem. Eng. J. 399(2020) 125671. [69] C. Masarapu, H.F. Zeng, K.H. Hung, B.Q. Wei, Effect of temperature on the capacitance of carbon nanotube supercapacitors, ACS Nano 3(8) (2009) 2199-2206. |
[1] | Junjie Cai, Xijian Li, Hao Sui, Honggao Xie. Study on the evolution of solid–liquid–gas in multi-scale pore methane in tectonic coal [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 122-131. |
[2] | Mohammed Benjelloun, Youssef Miyah, Salma Ssouni, Soulaiman Iaich, Mohamed El-habacha, Salek Lagdali, Khadija Saka, El Mustafa Iboustaten, Abdelaziz Ait Addi, Sanae Lairini, Rabia Bouslamti. Capparis spinosa L waste activated carbon as an efficient adsorbent for crystal violet toxic dye removal: Modeling, optimization by experimental design, and ecological analysis [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 283-302. |
[3] | Linghui Kong, Chao Li, Runxing Sun, Shu Zhang, Yi Wang, Jun Xiang, Song Hu, Dong Wang, Chuanjun Leng, Xun Hu. Thermal pretreatment of willow branches impacts yield and pore development of activated carbon in subsequent activation with ZnCl2 via modifying cellulose structure [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 227-237. |
[4] | Qingping Qu, Daoyan Liu, Hao Lyu, Jinsheng Sun. Process synthesis for the separation of coal-to-ethanol products [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 263-278. |
[5] | Pengxing Yuan, Xiude Hu, Jingjing Ma, Tuo Guo, Qingjie Guo. Thermogravimetric characteristics of corn straw and bituminous coal copyrolysis based the ilmenite oxygen carriers [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 8-15. |
[6] | Xuexiang Fu, Xing Tang, Yi Xu, Xintao Zhou, Dengfeng Zhang. Microwave irradiation-induced alterations in physicochemical properties and methane adsorption capability of coals: An experimental study using carbon molecular sieve [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 165-180. |
[7] | Wei Guo, Yan Zhang, Xiaxin Lei, Shuang Wang. An effective strategy of constructing multi-metallic oxides of ZnO/CoNiO2/CoO/C microflowers for improved supercapacitive performance [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 1-8. |
[8] | Yifang Mi, Wenqiang Wang, Sen Zhang, Yalong Guo, Yufeng Zhao, Guojin Sun, Zhihai Cao. Ultra-high specific surface area activated carbon from Taihu cyanobacteria via KOH activation for enhanced methylene blue adsorption [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 106-116. |
[9] | Siang Chen, Wenling Wu, Zhaoyang Niu, Deqi Kong, Wenbin Li, Zhongli Tang, Donghui Zhang. High adsorption selectivity of activated carbon and carbon molecular sieve boosting CO2/N2 and CH4/N2 separation [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 282-297. |
[10] | Xiaoping Su, Zhao Wang, Ning Li, Longjian Li, Ping Zhang, Ming Sun, Xiaoxun Ma. Study on coal pyrolysis characteristics by combining different pyrolysis reactors [J]. Chinese Journal of Chemical Engineering, 2024, 76(12): 1-9. |
[11] | Xiaoping Su, Ning Li, Longjian Li, Reyila Tuerhong, Yongchong Yu, Ping Zhang, Qiong Su, Tao Shen, Ming Sun, Xiaoxun Ma. Structural parameters and molecular model of Shendong subbituminous coal [J]. Chinese Journal of Chemical Engineering, 2024, 76(12): 124-134. |
[12] | Jianan Fan, Xianggang Zhang, Xia Jiang, Zhenghao Yang, Lingling Xie, Liwang Wang, Liang Ma, Hualin Wang, Yulong Chang. Cyclone-coalescence separation technology for enhanced droplet removal in natural gas purification process [J]. Chinese Journal of Chemical Engineering, 2024, 75(11): 191-203. |
[13] | Qiyao Yang, Xiaobin Qi, Qinggang Lyu, Zhiping Zhu. Experimental study on the activation of coal gasification fly ash from industrial CFB gasifiers [J]. Chinese Journal of Chemical Engineering, 2024, 65(1): 8-18. |
[14] | Pengcheng Hu, Ruimin Chai, Ping Wang, Jinke Yang, Shufeng Zhou. Supercapacitive properties of MnNiSx@Ti3C2Tx MXene positive electrode assisted by functionalized ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 102-109. |
[15] | Mohamed Mobarak, Saleh Qaysi, Mohamed Saad Ahmed, Yasser F. Salama, Ahmed Mohamed Abbass, Mohamed Abd Elrahman, Hamdy A. Abdel-Gawwad, Moaaz K. Seliem. Insights into the adsorption performance and mechanism of Cr(VI) onto porous nanocomposite prepared from gossans and modified coal interface: Steric, energetic, and thermodynamic parameters interpretations [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 118-128. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 86
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 24
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||