[1] C. Chen, G. Reniers, Chemical industry in China: The current status, safety problems, and pathways for future sustainable development, Saf. Sci. 128 (2020) 104741. [2] Q. Shi, X. Fu,The economic operation of the petrochemical industry will achieve another success in 2022, China Petroleum and Chemical Industry Federation. (2023). http://www.cpcif.org.cn/detail/51408d81-28c8-423d-8f24-97fe21e8b212 (accessed July 26, 2023). [3] G.Z. He, I.J.C. Boas, A.P.J. Mol, Y.L. Lu, What drives public acceptance of chemical industrial park policy and project in China? Resour. Conserv. Recycl. 138 (2018) 1-12. [4] P. Yang, L.J. Zhang, G. Tao, Smart chemical industry parks in China: current status, challenges, and pathways for future sustainable development, J. Loss Prev. Process. Ind. 83 (2023) 105105. [5] J.F. Yang, P.C. Wang, X.Y. Liu, M.C. Bian, L.C. Chen, S.Y. Lv, J.F. Tao, G.Y. Suo, S.Q. Xuan, R. Li, J.W. Zhang, C.M. Shu, Z. Dou, Analysis on causes of chemical industry accident from 2015 to 2020 in Chinese mainland: a complex network theory approach, J. Loss Prev. Process. Ind. 83 (2023) 105061. [6] X.T. Bi, R.S. Qin, D.Y. Wu, S.D. Zheng, J.S. Zhao, One step forward for smart chemical process fault detection and diagnosis, Comput. Chem. Eng. 164 (2022) 107884. [7] J.F. Zhou, G. Reniers, Petri-net based evaluation of emergency response actions for preventing domino effects triggered by fire, J. Loss Prev. Process. Ind. 51 (2018) 94-101. [8] J.F. Zhou, G. Reniers, Petri-net based cooperation modeling and time analysis of emergency response in the context of domino effect prevention in process industries, Reliab. Eng. Syst. Saf. 223 (2022) 108505. [9] W.M. Liu, G.Y. Hu, J.F. Li, Emergency resources demand prediction using case-based reasoning, Saf. Sci. 50 (3) (2012) 530-534. [10] J.F. Zhou, G. Reniers, Simulation analysis of the use of emergency resources during the emergency response to a major fire, J. Loss Prev. Process. Ind. 44 (2016) 1-11. [11] Y.J. Du, H.H. Xiao, J.H. Sun, Q.L. Duan, K.X. Qi, H. Chai, K.M. Liew, Hierarchical pre-positioning of emergency resources for a chemical industrial parks concentrated area, J. Loss Prev. Process. Ind. 66 (2020) 104130. [12] Y.J. Du, J.H. Sun, Q.L. Duan, K.X. Qi, H.H. Xiao, K.M. Liew, Optimal assignments of allocating and scheduling emergency resources to accidents in chemical industrial parks, J. Loss Prev. Process. Ind. 65 (2020) 104148. [13] F. Wang, H. Guo, J. Pei, C. Yang, C. Pei, Study on interval programming model for allocation of emergency resource under uncertain conditions, Journal of Safety Science and Technology,15 (2019) 107-113. [14] Y.W. Jia, K.Y. Yu, Z.Z. Liu, T.Y. Wang, K.K. Lu, C. Wang, Optimal distribution of emergency resources to accidents for pre-rescue in chemical industrial parks, J. Loss Prev. Process. Ind. 91 (2024) 105398. [15] Z. Yang, G. Zhang, F. Li, Z. Wang, X. Zhao, S. Chen, S.Chen, A.Yu, Y.Wang, C.Wang, J.Yuan, Requirements on emergency rescue materials equipment for hazardous chemical enterprises, GB 30077-2023, 2023-12-28. [16] F. Zhang, G.L. Zhao, Z. Wang, J.W. Yuan, Y.F. Cheng, Worst maximum credible accidental scenarios (WMCAS) - A new methodology to identify accident scenarios for risk assessment, J. Loss Prev. Process. Ind. 48 (2017) 87-100. [17] D. McCready, Development and communication of worst-case scenarios for the EPA risk management program, Process. Saf. Prog. 15 (2) (1996) 95-100. [18] C. Diaz-Ovalle, R. Vazquez-Roman, M. Sam Mannan, An approach to solve the facility layout problem based on the worst-case scenario, J. Loss Prev. Process. Ind. 23 (3) (2010) 385-392. [19] H. Meysami, T. Ebadi, H. Zohdirad, M. Minepur, Worst-case identification of gas dispersion for gas detector mapping using dispersion modeling, J. Loss Prev. Process. Ind. 26 (6) (2013) 1407-1414. [20] F.I. Khan, S. Abbasi, A criterion for developing credible accident scenarios for risk assessment, J. Loss Prev. Process. Ind. 15 (6) (2002) 467-475. [21] F.I. Khan, Use maximum-credible accident scenarios for realistic and reliable risk assessment, Chem. Eng. Prog. 97(11) (2001)56-64. [22] A.S. Markowski, D. Siuta, Selection of representative accident scenarios for major industrial accidents, Process. Saf. Environ. Prot. 111 (2017) 652-662. [23] H. Haken, Erfolgsgeheimnisse der Natur, Synergetik: Die Lehre vom Zusammenwirken., Shanghai Translation Publishing House,Shanghai, 2013. [24] K. Zhang, The research on the synergetic emergency rescue in chemical industry park, Master thesis, Shenyang Aerospace University, Shenyang, 2016. [25] R. Dong, Study on the linkage mechanism of emergency rescue and mutual assistance in hazardous chemical enterprises, Master thesis, Qingdao University of Science and Technology, Qingdao, 2017. [26] P. Chen, G. Chen, L. Zhou, J. Men, Intelligent decision system of emergency response based on multi-Agent cooperation in chemical industry park, Chemical Industry and Engineering Progress,40(8)(2021) 4656-4665. (in Chinese). [27] Y. Lei, G.R. Zhang, S. Lu, J.H. Qian, Revealing the generation mechanism of cross-regional emergency cooperation during accidents and disasters rescue, Saf. Sci. 163 (2023) 106140. [28] I. Cameron, S. Mannan, E. Nemeth, S. Park, H. Pasman, W. Rogers, B. Seligmann, Process hazard analysis, hazard identification and scenario definition: are the conventional tools sufficient, or should and can we do much better? Process. Saf. Environ. Prot. 110 (2017) 53-70. [29] Ministry of Emergency Management of the PRC, The Guidance of the State Administration of Work Safety on Strengthening Chemical Process Safety Management, China, 2013. https://www.mem.gov.cn/gk/gwgg/agwzlfl/yj_01/201308/t20130816_242220.shtml (accessed July 26, 2023). [30] P.A.M. Uijt de Haag, B. Ale, J. Post, Guideline for quantitative risk assessment: Instructions for a quantitative risk analysis in the Netherlands,In: European Safety and Reliability Conference(ESREL 1999), SDU Uitgevers, Den Haag, 1999. [31] P.A.M. Uijt de Haag, B. Ale, J. Post, Guideline for quantitative risk assessment: Instructions for a quantitative risk analysis in the Netherlands,In: European Safety and Reliability Conference(ESREL 1999), SDU Uitgevers, Den Haag, 1999. [32] M. Gerbec, M. Pontiggia, G. Antonioni, A. Tugnoli, V. Cozzani, M. Sbaouni, R. Lelong, Comparison of UDM and CFD simulations of a time varying release of LPG in geometrical complex environment, J. Loss Prev. Process. Ind. 45 (2017) 56-68. [33] Z.R. Jiao, C.X. Ji, Y. Sun, Y.Z. Hong, Q.S. Wang, Deep learning based quantitative property-consequence relationship (QPCR) models for toxic dispersion prediction, Process. Saf. Environ. Prot. 152 (2021) 352-360. [34] T. An, Research on emergency resources scheduling for chemical accidents in chemical industry park based on WebGIS, Master thesis,South China University of Technology,Guangzhou, 2015. [35] GB 7956.3—2014, L. Su, M. Wan, Z. Wang, X. Jiang, Y. Tian, J. Fu, W. Yin, Z. Zou, Fire Fighting Vehicles—Part 3:Foam Fire Fighting Vehicle, China, 2014-09-03. [36] SY/T 6670-2006, Y. Liu, Y. Mi, D. Li, G. Li, L. Li, Z. Dong, X. Peng, The construction specification for fire station of oil and natural gas field, China, 2006-11-03. [37] C.L. Zhao, X.B. Sun, S.L. Sun, T. Jiang, Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine, Expert Syst. Appl. 38 (8) (2011) 9908-9912. |