[1] K.A. Grice, Carbon dioxide reduction with homogenous early transition metal complexes: opportunities and challenges for developing CO2 catalysis, Coord. Chem. Rev. 336 (2017) 78-95. [2] B. Chang, H. Pang, F. Raziq, S.B. Wang, K.W. Huang, J.H. Ye, H.B. Zhang, Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: challenges and perspectives, Energy Environ. Sci. 16 (11) (2023) 4714-4758. [3] G.B. Bonan, S.C. Doney, Climate, ecosystems, and planetary futures: the challenge to predict life in earth system models, Science 359 (6375) (2018) eaam8328. [4] D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, R. Gorini, The role of renewable energy in the global energy transformation, Energy Strategy Rev. 24 (2019) 38-50. [5] Y.Y. Zhao, Y.H. Dong, Y.D. Guo, F. Huo, F. Yan, H.Y. He, Recent progress of green sorbents-based technologies for low concentration CO2 capture, Chin. J. Chem. Eng. 31 (2021) 113-125. [6] M. Lu, M. Zhang, J. Liu, T.Y. Yu, J.N. Chang, L.J. Shang, S.L. Li, Y.Q. Lan, Confining and highly dispersing single polyoxometalate clusters in covalent organic frameworks by covalent linkages for CO2 photoreduction, J. Am. Chem. Soc. 144 (4) (2022) 1861-1871. [7] X.X. Wang, Y.H. Duan, J.F. Zhang, Y.S. Tan, Catalytic conversion of CO2 into high value-added hydrocarbons over tandem catalyst, J. Fuel Chem. Technol. 50 (5) (2022) 538-563. [8] X.X. Chang, T. Wang, J.L. Gong, CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts, Energy Environ. Sci. 9 (7) (2016) 2177-2196. [9] Q.Q. Heng, B.F. Wang, X.Y. Fan, W. Chen, X.Y. Li, L.Q. Mao, W.F. Shangguan, Enhanced photoreduction activity of CO2 to CO over Ag-loaded mesoporous g-C3N4 (MCN) by promoting charge separation and CO2 adsorption, J. Alloys Compd. 920 (2022) 165945. [10] Y. Wu, Q.Y. Hu, Q.X. Chen, X.C. Jiao, Y. Xie, Fundamentals and challenges of engineering charge polarized active sites for CO2 photoreduction toward C2 products, Acc. Chem. Res. 56 (18) (2023) 2500-2513. [11] T.P. Yendrapati Taraka, A. Gautam, S.L. Jain, S. Bojja, U. Pal, Controlled addition of Cu/Zn in hierarchical CuO/ZnO p-n heterojunction photocatalyst for high photoreduction of CO2 to MeOH, J. CO2 Util. 31 (2019) 207-214. [12] T.J. Deka, A.I. Osman, D.C. Baruah, D.W. Rooney, Methanol fuel production, utilization, and techno-economy: a review, Environ. Chem. Lett. 20 (6) (2022) 3525-3554. [13] X.Y. Chen, L.G. Qiao, R.X. Zhao, J.H. Wu, J.Y. Gao, L. Li, J.C. Chen, W. Wang, M.G. Galloni, F.M. Scesa, Z. Chen, E. Falletta, Recent advances in photocatalysis on cement-based materials, J. Environ. Chem. Eng. 11 (2) (2023) 109416. [14] L.B. Wang, B. Cheng, L.Y. Zhang, J.G. Yu, In situ irradiated XPS investigation on S-scheme TiO2 @ZnIn2 S4 photocatalyst for efficient photocatalytic CO2 reduction, Small 17 (41) (2021) e2103447. [15] X.Y. Liu, C.B. Bie, B.W. He, B.C. Zhu, L.Y. Zhang, B. Cheng, 0D/2D NiS/CdS nanocomposite heterojunction photocatalyst with enhanced photocatalytic H2 evolution activity, Appl. Surf. Sci. 554 (2021) 149622. [16] A. Krishnan, A. Swarnalal, D. Das, M. Krishnan, V.S. Saji, S.M.A. Shibli, A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants, J. Environ. Sci. (China) 139 (2024) 389-417. [17] R.M. Mohamed, A.A. Ismail, M.W. Kadi, D.W. Bahnemann, A comparative study on mesoporous and commercial TiO2 photocatalysts for photodegradation of organic pollutants, J. Photochem. Photobiol. A Chem. 367 (2018) 66-73. [18] A. Sharma, A. Hosseini-Bandegharaei, N. Kumar, S. Kumar, K. Kumari, Insight into ZnO/carbon hybrid materials for photocatalytic reduction of CO2: an in-depth review, J. CO2 Util. 65 (2022) 102205. [19] Q.L. Xu, L.Y. Zhang, B. Cheng, J.J. Fan, J.G. Yu, S-scheme heterojunction photocatalyst, Chem 6 (7) (2020) 1543-1559. [20] S.Y. Gao, X.Y. Wang, C.J. Song, S.J. Zhou, F. Yang, Y. Kong, Engineering carbon-defects on ultrathin g-C3N4 allows one-pot output and dramatically boosts photoredox catalytic activity, Appl. Catal. B Environ. 295 (2021) 120272. [21] V.H. Nguyen, H.H. Do, T. Van Nguyen, P. Singh, P. Raizada, A. Sharma, S.S. Sana, A.N. Grace, M. Shokouhimehr, S.H. Ahn, C.L. Xia, S.Y. Kim, Q. Van Le, Perovskite oxide-based photocatalysts for solar-driven hydrogen production: progress and perspectives, Sol. Energy 211 (2020) 584-599. [22] A. Kumar, A. Kumar, V. Krishnan, Perovskite oxide based materials for energy and environment-oriented photocatalysis, ACS Catal. 10 (17) (2020) 10253-10315. [23] G.S.H. Thien, K.Y. Chan, A.R. Marlinda, B.K. Yap, Polymer-enhanced perovskite oxide-based photocatalysts: a review, Nanoscale 15 (47) (2023) 19039-19061. [24] S. Geller, Crystal structure of gadolinium orthoferrite, GdFeO3, 24 (6) (1956) 1236-1239. [25] F. Ali, M. Ikram, Z. Feng, M. Zahoor, M.N. Khalil, Potential of Gd-based nanocomposites (GdFeO3) as photocatalysts for the degradation of organic pollutants: a review, Z. Fur Phys. Chem. 238 (1) (2024) 1-34. [26] R. Liu, M. Tanaka, K. Yamaura, A.A. Belik, High-pressure synthesis, crystal structures, and magnetic and dielectric properties of GdFeO3- type perovskites (Dy0.5Mn0.5)(Mn1-x Ti x)O3 with x = 0.5 and 0.75, J. Alloys Compd. 825 (2020) 154019. [27] Y. Albadi, M.S. Ivanova, L.Y. Grunin, R.A. Makarin, A.S. Komlev, M.I. Chebanenko, V.N. Nevedomskyi, V.I. Popkov, Ultrasound-assisted co-precipitation synthesis of GdFeO3 nanoparticles: structure, magnetic and MRI contrast properties, Phys. Chem. Chem. Phys. 24 (47) (2022) 29014-29023. [28] E. Omari, M. Omari, Cu-doped GdFeO3 perovskites as electrocatalysts for the oxygen evolution reaction in alkaline media, Int. J. Hydrog. Energy 44 (54) (2019) 28769-28779. [29] A. Daud, M.F. Warsi, S. Zulfiqar, P.O. Agboola, A.U. Rehman, I. Shakir, Fabrication of GdFO3-Carbon nanotubes nanocomposites for enhanced photocatalytic applications, Ceram. Int. 46 (8) (2020) 12884-12890. [30] K. Saravanakumar, G. Jagan, J. Lee, C.M. Park, MOF-derived C, N-In2O3 with GdFeO3 Z-scheme heterostructure for the photocatalytic removal of tetracycline, NPJ Clean Water 6 (2023) 72. [31] R. Mohassel, M. Shabani-Nooshabadi, M. Salavati-Niasari, Effect of g-C3N4 amount on green synthesized GdFeO3/g-C3N4 nanocomposites as promising compounds for solid-state hydrogen storage, Int. J. Hydrog. Energy 48 (17) (2023) 6586-6596. [32] P. Liu, Y.L. Men, X.Y. Meng, C. Peng, Y.Y. Zhao, Y.X. Pan, Electronic interactions on platinum/(metal-oxide)-based photocatalysts boost selective photoreduction of CO2 to CH4, Angew. Chem. Int. Ed 62 (38) (2023) e202309443. [33] G.X. Liu, I.R. Ariyarathna, S.M. Ciborowski, Z.G. Zhu, E. Miliordos, K.H. Bowen, Simultaneous functionalization of methane and carbon dioxide mediated by single platinum atomic anions, J. Am. Chem. Soc. 142 (51) (2020) 21556-21561. [34] K. Liu, H.B. Zhang, T. Fu, L.X. Wang, R. Tang, Z.F. Tong, X.J. Huang, Construction of BiOBr/Ti3C2/exfoliated montmorillonite Schottky junction: new insights into exfoliated montmorillonite for inducing MXene oxygen functionalization and enhancing photocatalytic activity, Chem. Eng. J. 438 (2022) 135609. [35] C.Y. Hou, Y.C. Zhang, J. Li, A.P. Zhu, In-situ hydrothermal synthesis of CeO2/SnS2 heterojunction for use as a new efficient visible-light-driven photocatalyst, Mater. Lett. 213 (2018) 154-157. [36] L.Y. Zhang, J.J. Zhang, H.G. Yu, J.G. Yu, Emerging S-scheme photocatalyst, Adv. Mater. 34 (11) (2022) e2107668. [37] S. Cao, J.G. Yu, S. Wageh, A.A. Al-Ghamdi, M. Mousavi, J.B. Ghasemi, F.Y. Xu, H2-production and electron-transfer mechanism of a noble-metal-free WO3@ZnIn2S4 S-scheme heterojunction photocatalyst, J. Mater. Chem. A 10 (33) (2022) 17174-17184. [38] A. Shawky, R.M. Mohamed, S-scheme heterojunctions: Emerging designed photocatalysts toward green energy and environmental remediation redox reactions, J. Environ. Chem. Eng. 10 (5) (2022) 108249. [39] M. Alhaddad, A. Shawky, Pt-decorated ZnMn2O4 nanorods for effective photocatalytic reduction of CO2 into methanol under visible light, Ceram. Int. 47 (7) (2021) 9763-9770. [40] A. Lais, M.A. Gondal, M.A. Dastageer, Semiconducting oxide photocatalysts for reduction ofCO2 to methanol, Environ. Chem. Lett. 16 (1) (2018) 183-210. [41] C. Cheng, B.W. He, J.J. Fan, B. Cheng, S.W. Cao, J.G. Yu, An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism, Adv. Mater. 33 (22) (2021) e2100317. |