[1] E. Archer, B. Petrie, B. Kasprzyk-Hordern, G.M. Wolfaardt, The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters, Chemosphere 174 (2017) 437-446. [2] C. Aristizabal-Ciro, A.M. Botero-Coy, F.J. Lopez, G.A. Penuela, Monitoring pharmaceuticals and personal care products in reservoir water used for drinking water supply, Environ. Sci. Pollut. Res. Int. 24 (8) (2017) 7335-7347. [3] N. Morin-Crini, E. Lichtfouse, G.R. Liu, V. Balaram, A.R.L. Ribeiro, Z.J. Lu, F. Stock, E. Carmona, M.R. Teixeira, L.A. Picos-Corrales, J.C. Moreno-Pirajan, L. Giraldo, C. Li, A. Pandey, D. Hocquet, G. Torri, G. Crini, Worldwide cases of water pollution by emerging contaminants: a review, Environ. Chem. Lett. 20 (4) (2022) 2311-2338. [4] L.G. Fu, Y.X. Sun, J.B. Zhou, H.B. Li, S.X. Liang, Parabens, triclosan and bisphenol A in surface waters and sediments of baiyang lake, China: occurrence, distribution, and potential risk assessment, Toxics 12 (1) (2023) 31. [5] S.A. Khan, M. Jain, K.K. Pant, Z.M. Ziora, M.A.T. Blaskovich, Photocatalytic degradation of parabens: a comprehensive meta-analysis investigating the environmental remediation potential of emerging pollutant, Sci. Total Environ. 920 (2024) 171020. [6] L. Balcerzak, A.K. Surowiak, K. Groborz, S. Strozak, K. Piekarska, D.J. Strub, Comparative evaluation of mutagenic, genotoxic, cytotoxic, and antimicrobial effects of flavour and fragrance aldehydes, ketones, oximes, and oxime ethers, Toxicology 490 (2023) 153510. [7] W.L. Ma, X. Zhao, Z.F. Zhang, T.F. Xu, F.J. Zhu, Y.F. Li, Concentrations and fate of parabens and their metabolites in two typical wastewater treatment plants in northeastern China, Sci. Total Environ. 644 (2018) 754-761. [8] S. Oishi, Lack of spermatotoxic effects of methyl and ethyl esters of p-hydroxybenzoic acid in rats, Food Chem. Toxicol. 42 (11) (2004) 1845-1849. [9] J.R. Byford, L.E. Shaw, M.G. Drew, G.S. Pope, M.J. Sauer, P.D. Darbre, Oestrogenic activity of parabens in MCF7 human breast cancer cells, J. Steroid Biochem. Mol. Biol. 80 (1) (2002) 49-60. [10] X.B. Chang, Y.Y. He, L.H. Song, J. Ding, S.Y. Ren, M. Lv, L.X. Chen, Methylparaben toxicity and its removal by microalgae Chlorella vulgaris and Phaeodactylum tricornutum, J. Hazard Mater. 454 (2023) 131528. [11] X.Q. Chen, H.W. Rong, P. Ndagijimana, F. Nkinahamira, A. Kumar, D.B. Guo, B.H. Cui, Towards removal of PPCPs by advanced oxidation processes: a review, Results Eng. 20 (2023) 101496. [12] Preethi, S.P. Shanmugavel, G. Kumar, K.N. Yogalakshmi, M. Gunasekaran, B.J. Rajesh, Recent progress in mineralization of emerging contaminants by advanced oxidation process: a review, Environ. Pollut. 341 (2024) 122842. [13] A. Saravanan, V.C. Deivayanai, P.S. Kumar, G. Rangasamy, R.V. Hemavathy, T. Harshana, N. Gayathri, K. Alagumalai, A detailed review on advanced oxidation process in treatment of wastewater: mechanism, challenges and future outlook, Chemosphere 308 (Pt 3) (2022) 136524. [14] S. Yoo, H. Mohan, H.S. Oh, G. Kim, J.R. Hahn, T. Shin, Pd@PdS core shell nanocubes for photocatalytic degradation of methylparaben, Mater. Lett. 309 (2022) 131444. [15] R. Raj, S.M. Sathe, S. Das, M.M. Ghangrekar, Nickel-iron-driven heterogenous bio-electro-Fenton process for the degradation of methylparaben, Chemosphere 341 (2023) 139989. [16] X.X. Li, C. Song, B.B. Sun, J.S. Gao, Y.P. Liu, J. Zhu, Kinetics of zero-valent iron-activated persulfate for methylparaben degradation and the promotion of Cl, J. Environ. Manag. 321 (2022) 115973. [17] E. Asgari, A. Esrafili, R. Rostami, M. Farzadkia, O3, O3/UV and O3/UV/ZnO for abatement of parabens in aqueous solutions: effect of operational parameters and mineralization/biodegradability improvement, Process. Saf. Environ. Prot. 125 (2019) 238-250. [18] J.W. Feng, P. Nian, L. Peng, A.Y. Zhang, Y.B. Sun, Degradation of aqueous methylparaben by non-thermal plasma combined with ZnFe2O4-rGO nanocomposites: performance, multi-catalytic mechanism, influencing factors and degradation pathways, Chemosphere 271 (2021) 129575. [19] K.F. Shang, W.F. Li, X.J. Wang, N. Lu, N. Jiang, J. Li, Y. Wu, Degradation of p-nitrophenol by DBD plasma/Fe2+/persulfate oxidation process, Sep. Purif. Technol. 218 (2019) 106-112. [20] K.F. Shang, R. Morent, N. Wang, Y.X. Wang, B.F. Peng, N. Jiang, N. Lu, J. Li, Degradation of sulfamethoxazole (SMX) by water falling film DBD Plasma/Persulfate: reactive species identification and their role in SMX degradation, Chem. Eng. J. 431 (2022) 133916. [21] S. Yazici Guvenc, E. Can-Guven, G. Varank, Recalcitrant pollutants removal from paper mill wastewater by ferrous ion- and heat- activated persulfate oxidation processes using response surface methodology: a comparison study, Separ. Sci. Technol. 57 (7) (2022) 1151-1166. [22] T.H. Liu, B. Yao, Z.R. Luo, W. Li, C.W. Li, Z.Y. Ye, X.X. Gong, J. Yang, Y.Y. Zhou, Applications and influencing factors of the biochar-persulfate based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds, Sci. Total Environ. 836 (2022) 155421. [23] H. Guo, Y.W. Wang, X. Yao, Y.T. Zhang, Z. Li, S.J. Pan, J.G. Han, L.J. Xu, W.C. Qiao, J. Li, H.J. Wang, A comprehensive insight into plasma-catalytic removal of antibiotic oxytetracycline based on graphene-TiO2-Fe3O4 nanocomposites, Chem. Eng. J. 425 (2021) 130614. [24] W. Li, R. Zhou, R. Zhou, J. Weerasinghe, T. Zhang, A. Gissibl, P.J. Cullen, R. Speight, K.K. Ostrikov, Insights into amoxicillin degradation in water by non-thermal plasmas, Chemosphere 291 (Pt 2) (2022) 132757. [25] D.N. Mao, X. Yan, H.J. Wang, Z. Shen, C.W. Yi, Catalysis of rGO-WO3 nanocomposite for aqueous bisphenol A degradation in dielectric barrier discharge plasma oxidation process, Chemosphere 262 (2021) 128073. [26] J.Y. Ren, J. Li, L. Lv, J. Wang, Degradation of caffeic acid by dielectric barrier discharge plasma combined with Ce doped CoOOH catalyst, J. Hazard Mater. 402 (2021) 123772. [27] H.J. Wang, Z. Shen, X. Yan, H. Guo, D.N. Mao, C.W. Yi, Dielectric barrier discharge plasma coupled with WO3 for bisphenol A degradation, Chemosphere 274 (2021) 129722. [28] W.X. Jiang, J.W. Zhang, H. Guo, Sulfite activation by non-thermal plasma coupled with Fe2+ for ibuprofen degradation: in-depth insight into activation energy barrier and mechanism, Sep. Purif. Technol. 351 (2024) 128042. [29] Q. Huang, C. Fang, Degradation of 3, 3', 4, 4'-tetrachlorobiphenyl (PCB77) by dielectric barrier discharge (DBD) non-thermal plasma: degradation mechanism and toxicity evaluation, Sci. Total Environ. 739 (2020) 139926. [30] D. Nikitin, S. Preis, N. Dulova, Degradation of imidazolium-based ionic liquids by UV photolysis and pulsed corona discharge: the effect of persulfates addition, Sep. Purif. Technol. 344 (2024) 127235. [31] Y.W. Wang, J.W. Huang, H. Guo, C.D. Puyang, J.G. Han, Y. Li, Y.X. Ruan, Mechanism and process of sulfamethoxazole decomposition with persulfate activated by pulse dielectric barrier discharge plasma, Sep. Purif. Technol. 287 (2022) 120540. [32] J.P. Liang, X.F. Zhou, Z.L. Zhao, D.Z. Yang, W.C. Wang, Degradation of trimethoprim in aqueous by persulfate activated with nanosecond pulsed gas-liquid discharge plasma, J. Environ. Manag. 278 (Pt 2) (2021) 111539. [33] J.Y. Sima, J. Wang, J.X. Song, X.D. Du, F.F. Lou, Y.Q. Zhu, J.H. Lei, Q.X. Huang, Efficient degradation of polystyrene microplastic pollutants in soil by dielectric barrier discharge plasma, J. Hazard Mater. 468 (2024) 133754. [34] Y.Y. Su, Y.X. Yang, W.X. Jiang, J.G. Han, H. Guo, A novel strategy of peracetic acid activation by dielectric barrier discharge plasma for bisphenol a degradation: feasibility, mechanism and active species dominant to degradation pathway, Chem. Eng. J. 476 (2023) 146469. [35] Wang, Y., Xiang, L., Li, Z., Han, J., Guo, H. "Sulfite activation by water film dielectric barrier discharge plasma for ibuprofen degradation: efficiency, comparison of persulfate, mechanism, active substances dominant to pathway, and toxicity evaluation", Sep. Purif. Technol., 330 (2024) 125531. [36] M. Ansari, A. Hossein Mahvi, M. Hossein Salmani, M. Sharifian, H. Fallahzadeh, M. Hassan Ehrampoush, Dielectric barrier discharge plasma combined with nano catalyst for aqueous amoxicillin removal: performance modeling, kinetics and optimization study, energy yield, degradation pathway, and toxicity, Sep. Purif. Technol. 251 (2020) 117270. [37] K. Hu, Q.J. Xie, H.J. Wang, B. Zhang, Y.Y. Huang, S.L. Song, H.H. Zhang, Y.X. Ding, H. Huang, C.D. Wu, Synergistic catalysis of Cu-CeO2@CA composite film in a circulating DBD plasma system and its effect on ciprofloxacin degradation, Chem. Eng. J. 455 (2023) 140895. [38] F. Neese, Software update: the ORCA program system, version 4.0, Wires Comput. Mol. Sci. 8 (1) (2018): 132091. [39] T. Lu, F.W. Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem. 33 (5) (2012) 580-592. [40] Y.Q. Liu, X.X. He, Y.S. Fu, D.D. Dionysiou, Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254nm activation of persulfate, J. Hazard Mater. 305 (2016) 229-239. [41] N. Jiang, Y.H. Zhao, C. Qiu, K.F. Shang, N. Lu, J. Li, Y. Wu, Y. Zhang, Enhanced catalytic performance of CoO-CeO2 for synergetic degradation of toluene in multistage sliding plasma system through response surface methodology (RSM), Appl. Catal. B Environ. 259 (2019) 118061. [42] J.W. Huang, J.G. Han, H. Guo, Fe2+/Fe3+ cycle promoting hydroxylamine activation in dielectric barrier discharge system for efficient degradation of antibiotics: insight into performance and activation mechanism, Sep. Purif. Technol. 355 (2025) 129709. [43] Y.X. Yang, Y.C. Wang, W.X. Jiang, H. Guo, Efficient degradation of bisphenol A by a novel ternary synergistic dielectric barrier discharge plasma advanced oxidation process: the role of peracetic acid and ferrous ions, Sep. Purif. Technol. 354 (2025) 129568. |