[1] Y.Z. Wang, J.J. Wu, Thermochemical conversion of biomass: potential future prospects, Renew. Sustain. Energy Rev. 187 (2023) 113754. [2] J.X. Cai, N. Lin, Y.W. Li, J.P. Xue, F.X. Li, L.H. Wei, M.Y. Yu, X.H. Zha, W.Z. Li, Research on the application of catalytic materials in biomass pyrolysis, J. Anal. Appl. Pyrolysis 177 (2024) 106321. [3] M.W. Xia, Z.Q. Chen, Y.Q. Chen, H.P. Yang, W. Chen, H.P. Chen, Effect of various potassium agents on product distributions and biochar carbon sequestration of biomass pyrolysis, Energy 289 (2024) 130012. [4] G.J. Yin, F.Z. Zhang, Y. Gao, W.J. He, Q. Zhang, S.B. Yang, Increase of bio-char yield by adding potassium salt during biomass pyrolysis, J. Energy Inst. 110 (2023) 101342. [5] S. Ameen, Z. Hussain, M.I. Din, R.U. Khan, R. Khalid, Sustainable Al2O3 nanoparticles in catalytic pyrolysis: unlocking high-yield bio-oil from melia azedarach fruit biomass with comprehensive physicochemical analysis, J. Anal. Appl. Pyrolysis 181 (2024) 106635. [6] B.B. Qiu, C.H. Yang, Q.N. Shao, Y. Liu, H.Q. Chu, Recent advances on industrial solid waste catalysts for improving the quality of bio-oil from biomass catalytic cracking: a review, Fuel 315 (2022) 123218. [7] J.X. Wang, S.P. Zhang, D. Xu, H.Y. Zhang, Catalytic activity evaluation and deactivation progress of red mud/carbonaceous catalyst for efficient biomass gasification tar cracking, Fuel 323 (2022) 124278. [8] D.M. Santosa, C. Zhu, F.A. Agblevor, B. Maddi, B.Q. Roberts, I.V. Kutnyakov, S.J. Lee, H.M. Wang, In situ catalytic fast pyrolysis using red mud catalyst: impact of catalytic fast pyrolysis temperature and biomass feedstocks, ACS Sustainable Chem. Eng. 8 (13) (2020) 5156-5164. [9] F.Q. Guo, S. Liang, X.M. Zhao, X.P. Jia, K.Y. Peng, X.C. Jiang, L. Qian, Catalytic reforming of biomass pyrolysis tar using the low-cost steel slag as catalyst, Energy 189 (2019) 116161. [10] Y.X. Wu, H.M. Yu, H.Y. Chao, D.Z. Chen, A novel nickel catalyst supported on activated steel slags for syngas production and tar removal from biomass pyrolysis, Int. J. Hydrogen Energy 46 (75) (2021) 37268-37280. [11] X. Niu, L.H. Shen, Ca- and Mg-rich waste as high active carrier for chemical looping gasification of biomass, Chin. J. Chem. Eng. 38 (2021) 145-154. [12] Y. Li, L.J. Yan, X.R. Li, X. Jin, T. Li, Q. Liu, M.J. Wang, J. Kong, L.P. Chang, W.R. Bao, Study on the mechanism of acid/base catalyst on the release behavior of volatiles during low rank coal pyrolysis, CIESC J. 73 (3) (2022) 1173. (in Chinese). [13] D.T. Sekyere, J.H. Zhang, Y.Z. Chen, Y.S. Huang, M.F. Wang, J.X. Wang, N. Niwamanya, A. Barigye, Y.Y. Tian, Production of light olefins and aromatics via catalytic co-pyrolysis of biomass and plastic, Fuel 333 (2023) 126339. [14] N. Koga, S. Vyazovkin, A.K. Burnham, L. Favergeon, N.V. Muravyev, L.A. Perez-Maqueda, C. Saggese, P.E. Sanchez-Jimenez, ICTAC Kinetics Committee recommendations for analysis of thermal decomposition kinetics, Thermochim. Acta 719 (2023) 179384. [15] D.B. Anthony, J.B. Howard, H.C. Hottel, H.P. Meissner, Rapid devolatilization of pulverized coal, Symp. Int. Combust. 15 (1) (1975) 1303-1317. [16] D.B. Anthony, J.B. Howard, Coal devolatilization and hydrogastification, AlChE. J. 22 (4) (1976) 625-656. [17] K. Miura, A new and simple method to estimate f(E) and k0(E) in the distributed activation energy model from three sets of experimental data, Energy Fuels 9 (2) (1995) 302-307. [18] K. Miura, T. Maki, A simple method for estimating f(E) and k0(E) in the distributed activation energy model, Energy Fuels 12 (5) (1998) 864-869. [19] J.M. Cai, S.Y. Yang, T. Li, Logistic distributed activation energy model: part 2: application to cellulose pyrolysis, Bioresour. Technol. 102 (3) (2011) 3642-3644. [20] J. Kristanto, M.M. Azis, S. Purwono, Multi-distribution activation energy model on slow pyrolysis of cellulose and lignin in TGA/DSC, Heliyon 7 (7) (2021) e07669. [21] H. Liu, M.S. Ahmad, H. Alhumade, A. Elkamel, S. Sammak, B.X. Shen, A hybrid kinetic and optimization approach for biomass pyrolysis: the hybrid scheme of the isoconversional methods, DAEM, and a parallel-reaction mechanism, Energy Convers. Manag. 208 (2020) 112531. [22] S. Wakimoto, Y. Matsukawa, Y. Numazawa, Y. Matsushita, H. Aoki, Neural network estimation of kinetic parameters in distributed activation energy model (DAEM) without a priori assumptions for parallel reaction system, Fuel 343 (2023) 127836. [23] Y.W. Huang, M.Q. Chen, Y. Li, An innovative evaluation method for kinetic parameters in distributed activation energy model and its application in thermochemical process of solid fuels, Thermochim. Acta 655 (2017) 42-51. [24] R. Chen, J. Cai, X.F. Wang, W.J. Song, X.L. Li, Q.G. Lyu, A novel model to predict the pyrolysis process with preciseness and conciseness: complementation-distributed activation energy model (C-DAEM), Fuel 331 (2023) 125791. [25] C. Chen, M. Zhang, X. Chen, J. Yan, H. Li, X. Xu, Electricity production and pollutant removal performance of walnut shell biochar electrode in microbial fuel cell, Chin. J. Environ. Eng. 16 (10) (2022) 3281-3290. [26] Y. Liu, Y.G. Wang, L. Zou, Y.Y. Bai, H.R. Xiu, Research on the optimum carbonization process of walnut shell based on dynamic analysis, RSC Adv. 13 (20) (2023) 13412-13422. [27] Y. Tian, P. Perre, Multiple-distribution DAEM modelling of spruce pyrolysis: an investigation of the best trade-off regarding the number and shape of distributions, Energy Convers. Manag. 229 (2021) 113756. [28] Q.G. Xiong, J.C. Zhang, F. Xu, G. Wiggins, C. Stuart Daw, Coupling DAEM and CFD for simulating biomass fast pyrolysis in fluidized beds, J. Anal. Appl. Pyrolysis 117 (2016) 176-181. [29] J.M. Cai, R.H. Liu, New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass, Bioresour. Technol. 99 (8) (2008) 2795-2799. [30] D.Y. Chen, K.H. Cen, X.Z. Zhuang, Z.Y. Gan, J.B. Zhou, Y.M. Zhang, H. Zhang, Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio-oil, Combust. Flame 242 (2022) 112142. [31] B. Jankovic, N. Manic, D. Stojiljkovic, V. Jovanovic, TSA-MS characterization and kinetic study of the pyrolysis process of various types of biomass based on the Gaussian multi-peak fitting and peak-to-peak approaches, Fuel 234 (2018) 447-463. [32] H.P. Yang, R. Yan, H.P. Chen, D.H. Lee, C.G. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel 86 (12-13) (2007) 1781-1788. |