[1] Z. Khademi, K. Nikoofar, F. Shahriyari, Pentaerythritol: a versatile substrate in organic transformations, centralization on the reaction medium, Curr. Org. Synth. 16 (1) (2019) 38-69. [2] X. Liu, J.J. Zhou, S.M. Liu, J.Q. Zhao, Design and synthesis of thiol-terminated imidothioether oligomer as thermally latent hardener and modifier for high-performance epoxy/thiol thermosets, Sci. China Chem. 67 (2) (2024) 632-641. [3] S.M. Zhang, H.Y. Yu, Q. Chen, H.T. Hu, Y.X. Song, J.Y. Chen, Y. Cao, M. Xiang, Influence of pentaerythritol on the properties of polyvinyl alcohol films for the polarizers, J. Polym. Res. 27 (2) (2020) 31. [4] S.Z. Guo, J.Q. Xu, X.Y. Ni, Synthesis, structures, and properties of a new pentaerythritol-derived flame retardant used in polyamide 66, ACS Omega 6 (19) (2021) 12887-12897. [5] M.O. Robenson, Production of pentaerythritol, Canada Pat., CA 754619A (1967). [6] Q.D. Liu, J.W. Zhu and Z.Z. Peng, Process for production of pentaerythritol, dipentaerythritol, and tripentaerythritol, Chin. Pat., CN101265166A (2018). [7] X. Huang, C.H. Liao, G.Y. He, Q.S. Li and W.Y. Fan, Research progress in the preparation of pentaerythritol from formaldehyde, Appl. Chem. Ind. 48 (2019) 874-877. [8] M. Christoffer and F. Daniel, Process for production of pentaerythritol with an increased yield of dipentaerythritol, World Intel. Property Organ. Pat., PCT/SE2019/050883 (2019). [9] T. Ninomiya, T. Watanabe, T. Ikebe, A. Iwamoto, A process for producing a polyhydric alcohol, Eur. Pat., EP19950115408 (1999). [10] V. Serra-Holm, T. Salmi, P. Maki-Arvela, E. Paatero, L.P. Lindfors, Comparison of activity and selectivity of weakly basic anion-exchange catalysts for the aldolization of butyraldehyde with formaldehyde, Org. Process Res. Dev. 5 (4) (2001) 368-375. [11] B. Zada, M.Y. Chen, C.B. Chen, L. Yan, Q. Xu, W.Z. Li, Q.X. Guo, Y. Fu, Recent advances in catalytic production of sugar alcohols and their applications, Sci. China Chem. 60 (7) (2017) 853-869. [12] J.P. Valdes, L. Kahouadji, O.K. Matar, Current advances in liquid-liquid mixing in static mixers: a review, Chem. Eng. Res. Des. 177 (2022) 694-731. [13] D.Q. Wang, C. Sun, K. Wang, G.S. Luo, One-step continuous synthesis of anisole in microreactor, Chem. Ind. Eng. Prog.41 (2022) 6255-6260. [14] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E. N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin; K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 09, Revision D.01,Wallingford, CT, 2010. [15] A.M. Elhorri, M. Zouaoui-Rabah, NLO response of derivatives of benzene, stilbene and diphenylacetylene: MP2 and DFT calculations, Chin. J. Chem. Eng. 25 (6) (2017) 800-808. [16] C. Gonzalez, H.B. Schlegel, An improved algorithm for reaction path following, 90 (4) (1989) 2154-2161. [17] S.H. Tian, J.R. Li, X.J. Peng, Y. Xu, M.L. Wang, H.Y. Tang, W. Zhou, M. Wang, D. Ma, Heterogeneous catalytic dehydrogenative coupling of ethylene glycol and primary alcohols into α-hydroxycarboxylic acids, Sci. China Chem. 66 (9) (2023) 2583-2589. [18] M.A. Rahman, T. Cellnik, B.B. Ahuja, L. Li, A.R. Healy, A catalytic enantioselective stereodivergent aldol reaction, Sci. Adv. 9 (11) (2023) eadg8776. [19] V. Folliard, G. Postole, L. Marra, J.L. Dubois, A. Auroux, Synthesis of acrolein by oxidative coupling of alcohols over spinel catalysts: microcalorimetric and spectroscopic approaches, Catal. Sci. Technol. 10 (6) (2020) 1889-1901. [20] V. Folliard, G. Postole, L. Marra, J.L. Dubois, A. Auroux, Sustainable acrolein production from bio-alcohols on spinel catalysts: influence of magnesium substitution by various transition metals (Fe, Zn, co, Cu, Mn), Appl. Catal. Gen. 608 (2020) 117871. [21] D.I. Belkin, O.A. Demchenko, A mathematical model of the synthesis of pentaerythritol, Kinet. Catal. 61 (3) (2020) 374-383. [22] Y.Y. Birdja, M.T.M. Koper, The importance of cannizzaro-type reactions during electrocatalytic reduction of carbon dioxide, J. Am. Chem. Soc. 139 (5) (2017) 2030-2034. [23] Z.R. Yang, Y. Yang, X.F. Zhang, W. Du, J. Zhang, G. Qian, X.Z. Duan, X.G. Zhou, High-yield production of p-diethynylbenzene through consecutive bromination/dehydrobromination in a microreactor system, AlChE J. 68 (2) (2022) e17498. [24] Z.X. Li, Z.R. Yang, C. Yao, B. Wu, G. Qian, X.Z. Duan, X.G. Zhou, J. Zhang, Efficient continuous synthesis of 2-hydroxycarbazole and 4-hydroxycarbazole in a millimeter scale photoreactor, Chin. Chem. Lett. 35 (4) (2024) 108893. [25] J.N. Zhu, Z.R. Yang, Y.H. Chen, M.M. Chen, Z. Liu, Y.Q. Cao, J. Zhang, G. Qian, X.G. Zhou, X.Z. Duan, Mechanistic insights into the active intermediates of 2, 6-diaminopyridine dinitration, Chin. J. Chem. Eng. 56 (2023) 160-168. |