[1] Z. Guo, Frontier of heat transfer-microscale heat transfer, Adv. Mech. 30 (1) (2000) 1-6. [2] A.L. Moore, L. Shi, Emerging challenges and materials for thermal management of electronics, Mater. Today 17 (4) (2014) 163-174. [3] F. Xin, Q. Lyu, W.C. Tian, Visualization and heat transfer performance of mini-grooved flat heat pipe filled with different working fluids, Micromachines 13 (8) (2022) 1341. [4] Z.B. Yan, M.L. Jin, Z.G. Li, G.F. Zhou, L.L. Shui, Droplet-based microfluidic thermal management methods for high performance electronic devices, Micromachines 10 (2) (2019) 89. [5] N. Delalic, D. Mulahasanovic, E.N. Ganic, Porous media compact heat exchanger unit-- Experiment and analysis, Exp. Therm. Fluid Sci. 28 (2-3) (2004) 185-192. [6] M. Hemmat Esfe, M. Bahiraei, H. Hajbarati, M. Valadkhani, A comprehensive review on convective heat transfer of nanofluids in porous media: Energy-related and thermohydraulic characteristics, Appl. Therm. Eng. 178 (2020) 115487. [7] P.X. Jiang, M.H. Fan, G.S. Si, Z.P. Ren, Thermal-hydraulic performance of small scale micro-channel and porous-media heat-exchangers, Int. J. Heat Mass Transf. 44 (5) (2001) 1039-1051. [8] A. Mehmani, M. Prodanovic, The effect of microporosity on transport properties in porous media, Adv. Water Resour. 63 (2014) 104-119. [9] P. Kumar, K.M. Pandey, A review on latest development in heat transfer through porous media in combination with nanofluids and wavy walls, Mater. Today Proc. 45 (2021) 7171-7175. [10] C. Feng, S. Chandra, Evaporation of ethanol films wicking on structured, porous coatings deposited on copper plates, Int. J. Heat Mass Transf. 136 (2019) 821-831. [11] M. Aboufoul, N. Shokri, E. Saleh, C. Tuck, A. Garcia, Dynamics of water evaporation from porous asphalt, Constr. Build. Mater. 202 (2019) 406-414. [12] H.R. Li, Y. Chen, J.C. Zhang, G.M. Xin, Evaporation in porous media with different porosity, CIESC J. 68 (9) (2017) 3380-3387. [13] C.G. Wu, X.D. Chen, C. Chen, T. Ji, Study on evaporation rate of steel slag pervious concrete based on CT scanning, J. Build. Eng. 76 (2023) 107172. [14] P.L. Wang, J. Gao, B.Q. Xiao, G.B. Long, Q. Zheng, D.H. Shou, The fastest capillary flow in root-like networks under gravity, Langmuir 40 (18) (2024) 9741-9750. [15] G. Martic, J. De Coninck, T.D. Blake, Influence of the dynamic contact angle on the characterization of porous media, J. Colloid Interface Sci. 263 (1) (2003) 213-216. [16] M. Prat, On the influence of pore shape, contact angle and film flows on drying of capillary porous media, Int. J. Heat Mass Transf. 50 (7-8) (2007) 1455-1468. [17] K. Terpilowski, Influence of the ambient temperature on water and diiodomethane contact angle with quartz surface, Ann. UMCS Chemia 70 (1) (2015) 125-136. [18] J. Xu, Y. Wang, R. Yang, W.L. Liu, H.W. Wu, Y.L. Ding, Y.L. Li, A review of boiling heat transfer characteristics in binary mixtures, Int. J. Heat Mass Transf. 164 (2021) 120570. [19] B.R. Fu, M.S. Tsou, C. Pan, Boiling heat transfer and critical heat flux of ethanol-water mixtures flowing through a diverging microchannel with artificial cavities, Int. J. Heat Mass Transf. 55 (5-6) (2012) 1807-1814. [20] X.H. Lu, X.X. Luo, S.B. Cao, C.Z. Zou, Experimental analysis of heat storage and release of binary methanol aqueous solution pulsating heat pipe phase change accumulator, Front. Energy Res. 10 (2022) 798522. [21] G. Duursma, K. Sefiane, J. Clarke, Diffusion-evaporation studies of binary mixtures in capillary tubes, Defect Diffus. Forum 273-276 (2008) 577-582. [22] D.S. Freitas, M. Prat, Pore network simulation of evaporation of a binary liquid from a capillary porous medium, Transp. Porous Medium. 40 (1) (2000) 1-25. [23] X. Lu, E. Tsotsas, A. Kharaghani, Insights into evaporation from the surface of capillary porous media gained by discrete pore network simulations, Int. J. Heat Mass Transf. 168 (2021) 120877. [24] L.L. Fei, F.F. Qin, J.L. Zhao, D. Derome, J. Carmeliet, Lattice Boltzmann modelling of isothermal two-component evaporation in porous media, J. Fluid Mech. 955 (2023) A18. [25] B.Q. Xiao, W. Wang, X. Zhang, G.B. Long, J.T. Fan, H.X. Chen, L. Deng, A novel fractal solution for permeability and Kozeny-Carman constant of fibrous porous media made up of solid particles and porous fibers, Powder Technol. 349 (2019) 92-98. [26] J.T. Zhu, Uncertainty of kozeny-Carman permeability model for fractal heterogeneous porous media, Hydrology 10 (1) (2023) 21. [27] A.A. Avramenko, I.V. Shevchuk, M.M. Kovetskaya, Y.Y. Kovetska, Darcy-Brinkman-Forchheimer model for film boiling in porous media, Transp. Porous Medium. 134 (3) (2020) 503-536. [28] F. Cimolin, M. Discacciati, Navier-Stokes/Forchheimer models for filtration through porous media, Appl. Numer. Math. 72 (2013) 205-224. [29] S. Biswas, P. Fantinel, O. Borgman, R. Holtzman, L. Goehring, Drying and percolation in correlated porous media, Phys. Rev. Fluids 3 (12) (2018) 124307. [30] B.L. Tu, B.Q. Xiao, Y.D. Zhang, G.B. Long, An analytical model for permeability of fractal tree-like branched networks composed of converging-diverging capillaries, Phys. Fluids 36 (4) (2024) 043621. [31] S.F. Li, J. Gao, B.Q. Xiao, Y.D. Zhang, G.B. Long, Y. Li, Fractal analysis of dimensionless permeability and Kozeny-Carman constant of spherical granular porous media with randomly distributed tree-like branching networks, Phys. Fluids 36 (6) (2024) 063614. [32] B.Q. Xiao, H.Z. Zhu, F.Y. Chen, G.B. Long, Y. Li, A fractal analytical model for Kozeny-Carman constant and permeability of roughened porous media composed of particles and converging-diverging capillaries, Powder Technol. 420 (2023) 118256. [33] J.T. Li, B.B. Li, S. Gu, W. Du, L.Y. Liu, A “training-test” method for predicting single capillary evaporation rates using a conjugate mass transfer model based on coefficient fitting, Heat Mass Transf. 59 (11) (2023) 2057-2072. [34] R. Carbonell, S. Whitaker, Heat and Mass Transfer in porous Media, Springer Science & Business Media, New Yok, 1984, pp. 121-198. [35] T.Y. Liu, M. Asheghi, K.E. Goodson, Multiobjective optimization of graded, hybrid micropillar wicks for capillary-fed evaporation, Langmuir 38 (1) (2022) 221-230. [36] X.T. Li, G. Zhang, C. Wang, L.C. He, Y.T. Xu, R. Ma, W. Yao, Water harvesting from soils by light-to-heat induced evaporation and capillary water migration, Appl. Therm. Eng. 175 (2020) 115417. [37] T. Metzger, E. Tsotsas, Viscous stabilization of drying front: Three-dimensional pore network simulations, Chem. Eng. Res. Des. 86 (7) (2008) 739-744. [38] P. Krakowski, R. Karpinski, J. Jonak, R. Maciejewski, Evaluation of diagnostic accuracy of physical examination and MRI for ligament and meniscus injuries, J. Phys.: Conf. Ser. 1736 (1) (2021) 012027. [39] W.M. Guo, M.X. Chen, Z.Y. Wang, Y. Tian, J.X. Zheng, S. Gao, Y.Y. Li, Y.F. Zheng, X. Li, J.X. Huang, W. Niu, S.P. Jiang, C.X. Hao, Z.G. Yuan, Y. Zhang, M.J. Wang, Z.H. Wang, J. Peng, A.Y. Wang, Y. Wang, X. Sui, W.J. Xu, L.B. Hao, X.F. Zheng, S.Y. Liu, Q.Y. Guo, 3D-printed cell-free PCL-MECM scaffold with biomimetic micro-structure and micro-environment to enhance in situ meniscus regeneration, Bioact. Mater. 6 (10) (2021) 3620-3633. [40] I.S. Shivakumara, C.E. Nanjundappa, K.B. Chavaraddi, Darcy-Benard-Marangoni convection in porous media, Int. J. Heat Mass Transf. 52 (11-12) (2009) 2815-2823. [41] M.M. Blaszczyk, J.P. Sek, L. Przybysz, Capillary bundle model for gravitational flow of emulsion through granular media and experimental validation, Chem. Eng. Sci. 155 (2016) 415-427. [42] H. Collini, M.D. Jackson, Relationship between zeta potential and wettability in porous media: Insights from a simple bundle of capillary tubes model, J. Colloid Interface Sci. 608 (2022) 605-621. [43] Y. Li, H.T. Li, S.N. Chen, Q.R. Ma, C. Liu, Two-phase fluid flow characterizations in a tight rock: A fractal bundle of the capillary tube model, Ind. Eng. Chem. Res. 58 (45) (2019) 20806-20814. [44] S. Esser, E. Lower, U.A. Peuker, Network model of porous media-Review of old ideas with new methods, Sep. Purif. Technol. 257 (2021) 117854. [45] Y. Yuan, Y.F. Meng, H.L. Tang, A new approach to establishing the capillary bundle model, Reserv. Eval. Dev. 8 (3) (2018) 35-39. [46] J.L. Fu, H.R. Thomas, C.F. Li, Tortuosity of porous media: Image analysis and physical simulation, Earth Sci. Rev. 212 (2021) 103439. |