[1] M. Armand, J.M. Tarascon, Building better batteries, Nature 451 (7179) (2008) 652-657. [2] J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc. 135 (4) (2013) 1167-1176. [3] K.S. Pitzer, Thermodynamics of electrolytes. I. Theoretical basis and general equations, J. Phys. Chem. 77 (2) (1973) 268-277. [4] K.S. Pitzer, G. Mayorga, Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent, J. Phys. Chem. 77 (19) (1973) 2300-2308. [5] K.S. Pitzer, G. Mayorga, Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2-2 electrolytes, J. Solut. Chem. 3 (7) (1974) 539-546. [6] K.S. Pitzer, J.J. Kim, Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes, J. Am. Chem. Soc. 96 (18) (1974) 5701-5707. [7] C.E. Harvie, J.H. Weare, The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-Cl-SO4-H2O system from zero to high concentration at 25° C, Geochim. Cosmochim. Acta 44 (7) (1980) 981-997. [8] C.E. Harvie, H.P. Eugster, J.H. Weare, Mineral equilibria in the six-component seawater system, Na-K-Mg-Ca-SO4-Cl-H2O at 25℃. II: Compositions of the saturated solutions, Geochim. Cosmochim. Acta 46 (9) (1982) 1603-1618. [9] C.E. Harvie, N. Moeller, J.H. Weare, The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25℃, Geochim. Cosmochim. Acta 48 (4) (1984) 723-751. [10] P.S. Song, Y. Yao, B. Sun, W. Li, Pitzer model of thermodynamics for the Li+, Na+, K+, Mg2+/Cl-, SO42--H2O system, Sci. Sin. Chim. 40 (9) (2010) 1286-1296. [11] P.S. Song, Y. Yao, Thermodynamics and phase diagram of the salt lake brine system at 298.15 K, I. Li+, K+, Mg2+/Cl-, SO42--H2O system, Calphad 25 (3) (2001) 329-341. [12] P.S. Song, Y. Yao, Thermodynamics and phase diagram of the salt lake brine system at 298.15 K, V. model for the system Li+, Na+, K+, Mg2+/Cl-, SO42--H2O and its applications. Calphad 27 (4) (2003) 343-352. [13] X.M. Cui, Y.P. Dong, Z.J. Wu, W. Li, Double salt crystals with a hollowed-out morphology: precipitation from concentrated oilfield water and their identification, Chin. J. Inorg. Chem. 24 (1) (2008) 73-77. [14] Q.H. Li, T.X. Gu, S.S. Yu, Y. Yao, B. Li, W. Li, Study on the precipitation pathway of nanyishan oilfield brine at subzero temperatures, Acta Phys. Chim. Sin. 27 (8) (2011) 1803-1808. [15] B. Sun, P.S. Song, W. Li, L.J. Guo, Thermodynamics and phase equilibria of the oil field brine with Sr system at 25 ℃ I. Sr, Na, K, Li// Cl-H2O system, J. Salt Lake Res. 23 (4) (2015) 50-58, 65. [16] Y.J. Bi, B. Sun, J. Zhao, P.S. Song, W. Li, Phase equilibrium in ternary system SrCl2-CaCl2-H2O at 25℃, Chin. J. Inorg. Chem. 27 (9) (2011) 1765-1771. [17] Deng, Phase equilibrium for the aqueous system containing lithium, sodium, potassium, chloride, and borate ions at 298.15 K, J. Chem. Eng. Data 49 (5) (2004) 1295-1299. [18] L.J. Shi, B. Sun, X.P. Ding, P.S. Song, Phase equilibria in ternary system KCl-SrCl2-H2O at 25℃, Chin. J. Inorg. Chem. 26 (2) (2010) 333-338. [19] X.P. Ding, B. Sun, L.J. Shi, H.T. Yang, P.S. Song, Study on phase equilibria in NaCl-SrCl2-H2O ternary system at 25 ℃, Inorg. Chem. Ind. 42 (6) (2010) 9-11. [20] T.L. Deng, D.C. Li, Solid-liquid metastable equilibria in the quaternary system (LiCl + NaCl + CaCl2 + H2O) at 288.15 K, Journal of Chemical & Engineering Data 53 (11) (2008) 2488-2492. [21] T.L. Deng, X. Yu, D.C. Li, Metastable phase equilibrium in the aqueous ternary system K2SO4+MgSO4+H2O at (288.15 and 308.15)K, J. Solut. Chem. 38 (1) (2009) 27-34. [22] D.W. Zeng, W.F. Xu, W. Voigt, X. Yin, Thermodynamic study of the system (LiCl+CaCl2+H2O), J. Chem. Thermodyn. 40 (7) (2008) 1157-1165. [23] L.J. Guo, B. Sun, D.W. Zeng, Y. Yao, H.J. Han, Isopiestic measurement and solubility evaluation of the ternary system LiCl-SrCl2-H2O at 298.15 K, J. Chem. Eng. Data 57 (3) (2012) 817-827. [24] L.Z. Meng, M.S. Gruszkiewicz, T.L. Deng, Y.F. Guo, D. Li, Isothermal evaporation process simulation using the pitzer model for the quinary system LiCl-NaCl-KCl-SrCl2-H2O at 298.15 K, Ind. Eng. Chem. Res. 54 (33) (2015) 8311-8318. [25] L.Z. Meng, D. Li, Pitzer thermodynamic modeling study on solid-liquid equilibria of the quinary system LiCl-NaCl-CaCl2-SrCl2-H2O at 298.15 K, RSC Adv. 7 (86) (2017) 54313-54317. [26] R.Z. Cui, W. Li, Y.P. Dong, J. Li, Measured and predicted solubility phase diagrams of quaternary systems LiBr-NaBr-MgBr2-H2O and LiBr-KBr-MgBr2-H2O at 298.15 K, Chem. Res. Chin. Univ. 36 (6) (2020) 1234-1240. [27] R.Z. Cui, S.H. Sang, W. Li, Y.P. Dong, (solid + liquid) phase equilibria in the quaternary system (NaBr + MgBr2 + CaBr2 + H2O) at 298.15 K, J. Chem. Eng. Data 63 (9) (2018) 3400-3407. [28] R.Z. Cui, Z.C. Wang, J.S. Xu, S.H. Sang, Measurements and calculations of solid-liquid equilibria in the quaternary system KBr-CaBr2-MgBr2-H2O at (298 and 323) K, Fluid Phase Equilib. 450 (2017) 140-148. [29] R.Z. Cui, S.H. Sang, D.W. Li, Q.Z. Liu, Measurements and calculations of solid-liquid equilibria in the quaternary system NaBr-KBr-CaBr2-H2O at 298K, Calphad 49 (2015) 120-126. [30] G.L. Nie, R.Z. Cui, W. Li, Stable phase equilibria of the quaternary system LiBr-NaBr-KBr-H2O and the ternary system LiBr-KBr-H2O at 323.15 K, J. Chem. Eng. Data 68 (1) (2023) 229-235. [31] G.L. Nie, R.Z. Cui, Z. Liu, W. Li, Solid-liquid phase equilibria of quaternary system LiBr-NaBr-KBr-H2O and its subsystems at 348.15 K, ACS Omega 7 (50) (2022) 46594-46601. [32] G.L. Nie, R.Z. Cui, S.H. Sang, Z.Z. Wu, C. Ye, Experimental study and theoretical simulation of fluid phase equilibrium in the subsystems of quinary system NaBr-KBr-MgBr2-SrBr2-H2O at 298 K, J. Mol. Liq. 306 (2020) 112635. [33] C.C. Chen, P.M. Mathias, Applied thermodynamics for process modeling, AlChE. J. 48 (2) (2002) 194-200. [34] R.H. Stokes, R.A. Robinson, Electrolyte solution. United States of America Dover Publications, New York, 2002. [35] J.L. Lebowitz, J.K. Percus, Mean spherical model for lattice gases with extended hard cores and continuum fluids, Phys. Rev. 144 (1) (1966) 251-258. [36] C. Christov, S. Velikova, K. Ivanova, Study of (m 1 LiX + m 2 CaX 2)(aq) where m i denotes molality and X denotes Cl, or Br at the temperature 298.15 K, J. Chem. Thermodyn. 32 (11) (2000) 1505-1512. [37] C. Christov, An isopiestic study of aqueous NaBr and KBr at 50℃: chemical equilibrium model of solution behavior and solubility in the NaBr-H2O, KBr-H2O and Na-K-Br-H2O systems to high concentration and temperature, Geochim. Cosmochim. Acta 71 (14) (2007) 3557-3569. [38] C. Christov, Isopiestic investigation of the osmotic coefficients of MgBr2(aq) and study of bromide salts solubility in the (m1KBr+m2MgBr2)(aq) system at T =323.15K. Thermodynamic model of solution behaviour and (solid+liquid) equilibria in the MgBr2(aq), and (m1KBr+m2MgBr2)(aq) systems to high concentration and temperature, J. Chem. Thermodyn. 43 (3) (2011) 344-353. [39] S.L. Clegg, J.A. Rard, D.G. Miller, Isopiestic determination of the osmotic and activity coefficients of NaCl + SrCl2 + H2O at 298.15 K and representation with an extended ion-interaction model, J. Chem. Eng. Data 50 (4) (2005) 1162-1170. [40] D. Chinnappa Reddy, J. Ananthaswamy, Thermodynamic properties of aqueous electrolyte solutions: an e.m.f. study of{KCl(mA) + SrCl2(mB)}(aq) at the temperatures 298.15 K, 308.15 K, and 318.15 K, J. Chem. Thermodyn. 22 (10) (1990) 1015-1023. [41] R.Z. Cui, W. Li, Y.P. Dong, J. Li, Phase equilibrium and phase diagram for the quaternary system LiBr-NaBr-KBr-H2O at 298.15 K, J. Chem. Eng. Data 65 (6) (2020) 3021-3028. [42] C. Christov, Study of bromide salts solubility in the (m 1NaBr+ m 2MgBr2)(aq) system at T =323.15K. Thermodynamic model of solution behavior and (solid+liquid) equilibria in the (Na+K+Mg+Br+H2O) system to high concentration and temperature, J. Chem. Thermodyn. 47 (2012) 335-340. |