Chinese Journal of Chemical Engineering ›› 2025, Vol. 80 ›› Issue (4): 274-280.DOI: 10.1016/j.cjche.2024.12.004
Previous Articles Next Articles
Zhengyong Xu1, Yan Du2, Yan Liu1, Jintao Ou2, Jingwei Chen2, Huaming Xie1
Received:
2024-11-05
Revised:
2024-12-03
Accepted:
2024-12-09
Online:
2025-02-13
Published:
2025-04-28
Contact:
Jingwei Chen,E-mail:chenjingwei@hnu.edu.cn
Supported by:
Zhengyong Xu1, Yan Du2, Yan Liu1, Jintao Ou2, Jingwei Chen2, Huaming Xie1
通讯作者:
Jingwei Chen,E-mail:chenjingwei@hnu.edu.cn
基金资助:
Zhengyong Xu, Yan Du, Yan Liu, Jintao Ou, Jingwei Chen, Huaming Xie. Effect analysis on degradation mechanism of dioxins under hydrothermal conditions by molecular dynamic simulation[J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 274-280.
Zhengyong Xu, Yan Du, Yan Liu, Jintao Ou, Jingwei Chen, Huaming Xie. Effect analysis on degradation mechanism of dioxins under hydrothermal conditions by molecular dynamic simulation[J]. 中国化学工程学报, 2025, 80(4): 274-280.
[1] Y.Y. Zhang, L. Wang, L. Chen, B. Ma, Y.K. Zhang, W. Ni, D.C.W. Tsang, Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives, J. Hazard. Mater. 411 (2021) 125132. [2] G. Li, Common technical analysis of municipal solid waste treatment, Science and Technology & Innovation 24 (2019) 131-132. [3] B. Leckner, Process aspects in combustion and gasification Waste-to-Energy (WtE) units, Waste Manag. 37 (2015) 13-25. [4] L.L. Yang, G.R. Liu, Q.Q. Zhu, M.H. Zheng, Small-scale waste incinerators in rural China: Potential risks of dioxin and polychlorinated naphthalene emissions, Emerg. Contam. 5 (2019) 31-34. [5] Y. Jeong, S.J. Kim, K.H. Shin, S.Y. Hwang, Y.R. An, H.B. Moon, Accumulation and temporal changes of PCDD/Fs and dioxin-like PCBs in finless porpoises (Neophocaena asiaeorientalis) from Korean coastal waters: Tracking the effectiveness of regulation, Mar. Pollut. Bull. 105 (1) (2016) 30-36. [6] J.J. Zhang, S.G. Zhang, B. Liu, Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: a review, J. Clean. Prod. 250 (2020) 119507. [7] A. Sanlisoy, M.O. Carpinlioglu, A review on plasma gasification for solid waste disposal, Int. J. Hydrog. Energy 42 (2) (2017) 1361-1365. [8] I.W. Nah, K.Y. Hwang, Y.G. Shul, Effect of metal and glycol on mechanochemical dechlorination of polychlorinated biphenyls (PCBs), Chemosphere 73 (1) (2008) 138-141. [9] S. Hashimoto, K. Watanabe, K. Nose, M. Morita, Remediation of soil contaminated with dioxins by subcritical water extraction, Chemosphere 54 (1) (2004) 89-96. [10] Y. Lee, M.C. Cui, J. Choi, J. Kim, Y. Son, J. Khim, Degradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in real-field soil by an integrated visible-light photocatalysis and solvent migration system with p-n heterojunction BiVO4/Bi2O3, J. Hazard. Mater. 344 (2018) 1116-1125. [11] M. Megharaj, B. Ramakrishnan, K. Venkateswarlu, N. Sethunathan, R. Naidu, Bioremediation approaches for organic pollutants: a critical perspective, Environ. Int. 37 (8) (2011) 1362-1375. [12] Q. Wang, J.H. Yan, Y. Chi, X.D. Li, S.Y. Lu, Application of thermal plasma to vitrify fly ash from municipal solid waste incinerators, Chemosphere 78 (5) (2010) 626-630. [13] F.K. Urakaev, V.V. Boldyrev, Mechanism and kinetics of mechanochemical processes in comminuting devices 2. Applications of the theory. Experiment, Powder Technol. 107 (3) (2000) 197-206. [14] Z.L. Chen, Q.J. Mao, S.Y. Lu, A. Buekens, S.X. Xu, X. Wang, J.H. Yan, Dioxins degradation and reformation during mechanochemical treatment, Chemosphere 180 (2017) 130-140. [15] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B Environ. 125 (2012) 331-349. [16] P.L. W, Review: in situ and bioremediation of organic pollutants in aquatic sediments, J. Hazard. Mater. 177 (1-3) (2010) 81-89. [17] Z.R. Sun, F. Takahashi, Y. Odaka, K. Fukushi, Y. Oshima, K. Yamamoto, Effects of potassium alkalis and sodium alkalis on the dechlorination of o-chlorophenol in supercritical water, Chemosphere 66 (1) (2007) 151-157. [18] G. Brunner, Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes, J. Supercrit. Fluids 47 (3) (2009) 373-381. [19] S.K. Bhargava, J. Tardio, J. Prasad, K. Foger, D.B. Akolekar, S.C. Grocott, Wet oxidation and catalytic wet oxidation, Ind. Eng. Chem. Res. 45 (4) (2006) 1221-1258. [20] D.Z. Chen, Y.Y. Hu, P.F. Zhang, Hydrothermal treatment of incineration fly ash for PCDD/Fs decomposition: the effect of iron addition, Environ. Technol. 33 (22-24) (2012) 2517-2523. [21] Y.Y. Hu, P.F. Zhang, D.Z. Chen, B. Zhou, J.Y. Li, X.W. Li, Hydrothermal treatment of municipal solid waste incineration fly ash for dioxin decomposition, J. Hazard. Mater. 207-208 (2012) 79-85. [22] J.L. Xie, Y.Y. Hu, D.Z. Chen, B. Zhou, Chemical decomposition of PCDDs and PCDFs with carbonic dihydrazide in MSWI fly ash, Environ. Pollut. Contr. 30 (11) (2008) 1-3, 8. [23] T. Zhang, Y.C. Yang, K. Zhou, B. Liu, G.P. Tian, W. Zuo, H.Y. Zhou, B. Bian, Hydrothermal oxidation degradation of dioxins in fly ash with water-washing and added Ce-Mn catalyst, J. Environ. Manage. 317 (2022) 115430. [24] Y.F. Wang, X.D. Li, J. Jin, J.H. Yan, Hydrothermal decomposition of polychlorinated divenzo-p-dioxins and dibenzofurans in fly ash of medical waste incinerator, Proc. CSEE 30 (26) (2010) 56-61. [25] Y.Q. Jin, X.J. Ma, X.G. Jiang, H.M. Liu, X.D. Li, J.H. Yan, Hydrothermal degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in fly ash from municipal solid waste incineration under non-oxidative and oxidative conditions, Energy Fuels 27 (1) (2013) 414-420. [26] Q.L. Qiu, Q. Chen, X.G. Jiang, G.J. Lv, Z.L. Chen, S.Y. Lu, M.J. Ni, J.H. Yan, X.L. Lin, H.B. Song, J.J. Cao, Improving microwave-assisted hydrothermal degradation of PCDD/Fs in fly ash with added Na2HPO4 and water-washing pretreatment, Chemosphere 220 (2019) 1118-1125. [27] A. Suzuki, P. Selvam, T. Kusagaya, S. Takami, M. Kubo, A. Imamura, A. Miyamoto, Chemical reaction dynamics of PeCB and TCDD decomposition: a tight-binding quantum chemical molecular dynamics study with first-principles parameterization, Int. J. Quantum Chem. 102 (3) (2005) 318-327. [28] C.X. Zhang, T.L. Sun, X.M. Sun, Mechanism for OH- initiated degradation of 2, 3, 7, 8-tetrachlorinated dibenzo-p-dioxins in the presence of O2 and NO/H2O, Environ. Sci. Technol. 45 (11) (2011) 4756-4762. [29] J. Ma, X.Q. Dong, Y.Z. Yu, B.X. Zheng, M.H. Zhang, The effects of alkalis on the dechlorination of o-chlorophenol in supercritical water: Molecular dynamics simulation and experiment, Chem. Eng. J. 241 (2014) 268-272. [30] W.S. Li, L. Li, Z.Y. Wen, D.H. Yan, M.J. Liu, Q.F. Huang, Degradation mechanism of dioxins in municipal solid waste incineration fly ash by low-temperature thermal treatment, Res Environ Sci. 36 (2023) 1227-1235. [31] H. Fueno, K. Tanaka, S. Sugawa, Theoretical study of the dechlorination reaction pathways of octachlorodibenzo-p-dioxin, Chemosphere 48 (8) (2002) 771-778. [32] Y. Zhang, S.N. Zhang, X.Y. Li, Z.Y. Wang, R.J. Qu, Cross-coupling of 1, 2, 3, 4-tetrachlororodibenzo- p-dioxin with six coexisting polycyclic aromatic hydrocarbons during photodegradation on a fly ash surface, Environ. Sci. Technol. 58 (46) (2024) 20577-20587. [33] X.D. Ma, T.S. He, Y.Q. Da, F.Y. Su, R.H. Yang, Utilizing fly ash from coal-fired power plants to improve the utilization of incineration fly ash resources and reduce toxicity, J. Environ. Manage. 371 (2024) 123168. [34] N. Themba, L.L. Sibali, T.B. Chokwe, Modification of activated carbon to enhance the absorption of PCDD/F and dl-PCBs emissions in flue gas in South Africa, Discov. Appl. Sci. 6 (10) (2024) 543. [35] J. Chen, X. Pan, H.Q. Li, H.H. Jin, J.R. Fan, Molecular dynamics investigation on the gasification of a coal particle in supercritical water, Int. J. Hydrog. Energy 45 (7) (2020) 4254-4267. [36] D.K. Hong, T. Si, X.X. Li, X. Guo, Reactive molecular dynamic simulations of the CO2 gasification effect on the oxy-fuel combustion of Zhundong coal char, Fuel Process. Technol. 199 (2020) 106305. [37] A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF: A reactive force field for hydrocarbons, J. Phys. Chem. A 105 (41) (2001) 9396-9409. [38] K. Chenoweth, S. Cheung, A.C.T. van Duin, W.A. Goddard 3rd, E.M. Kober, Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field, J. Am. Chem. Soc. 127 (19) (2005) 7192-7202. [39] M.A. Wood, A.C. van Duin, A. Strachan, Coupled thermal and electromagnetic induced decomposition in the molecular explosive αHMX; a reactive molecular dynamics study, J. Phys. Chem. A 118 (5) (2014) 885-895. [40] J.E. Basconi, M.R. Shirts, Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations, J. Chem. Theory Comput. 9 (7) (2013) 2887-2899. [41] L.L. Liu. Study on hydrothermal degradation law of dioxins in municipal waste incineration fly ash. Master of Engineering thesis, China University of Mining and Technology, Xuzhou, China, 2019. [42] D.L. Wei, C.F. Zhao, A. Khan, L. Sun, Y.F. Ji, Y.J. Ai, X.K. Wang, Sorption mechanism and dynamic behavior of graphene oxide as an effective adsorbent for the removal of chlorophenol based environmental-hormones: a DFT and MD simulation study, Chem. Eng. J. 375 (2019) 121964. [43] X.F. Huang, L. Wang, G. Fan, X.T. Bi, D.H. Yan, J.W.C. Wong, Y.Z. Zhu, Characterization and stabilization of incineration fly ash from a new multi-source hazardous waste co-disposal system: field-scale study on solidification and stabilization, Environ. Sci. Pollut. Res. Int. 31 (5) (2024) 7712-7727. [44] S. Chen, T.J. Fan, T. Ren, N. Zhang, L.J. Zhao, R.G. Zhong, G.H. Sun, High-throughput prediction of oral acute toxicity in Rat and Mouse of over 100, 000 polychlorinated persistent organic pollutants (PC-POPs) by interpretable data fusion-driven machine learning global models, J. Hazard. Mater. 480 (2024) 136295. [45] A.A. Sultan, B.I. Al-Kaisi, The testicular toxicity caused by 2, 3, 7, 8-tetrachloro-dibenzo-p-dioxin in rats, as well as the potential protective impact of resveratrol, Egypt. J. Vet. Sci. 56 (6) (2025) 1225-1237. |
[1] | Jing Wen, Ruirui Yuan, Tao Jiang, Tangxia Yu, Yufan Zhang. Solvothermal synthesis and adsorption performance of layered boehmite using aluminum chloride and high-alumina fly ash [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 280-290. |
[2] | Shunda lin, Yang Lu, Lin Zheng, Ling Long, Xuguang Jiang, Jianhua Yan. Mechanism study of Cu(II) adsorption from acidic wastewater by ultrasonic-modified municipal solid waste incineration fly ash [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 157-165. |
[3] | Qiyao Yang, Xiaobin Qi, Qinggang Lyu, Zhiping Zhu. Experimental study on the activation of coal gasification fly ash from industrial CFB gasifiers [J]. Chinese Journal of Chemical Engineering, 2024, 65(1): 8-18. |
[4] | Zhibin Ma, Xueli Zhang, Guangjun Lu, Yanxia Guo, Huiping Song, Fangqin Cheng. Hydrothermal synthesis of zeolitic material from circulating fluidized bed combustion fly ash for the highly efficient removal of lead from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 193-205. |
[5] | Danlong Li, Yannan Liang, Hainan Wang, Ruoqian Zhou, Xiaokang Yan, Lijun Wang, Haijun Zhang. Investigation on the effects of fluid intensification based preconditioning process on the decarburization enhancement of fly ash [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 275-283. |
[6] | Widi Astuti, Achmad Chafidz, Ahmed S. Al-Fatesh, Anis H. Fakeeha. Removal of lead (Pb(II)) and zinc (Zn(II)) from aqueous solution using coal fly ash (CFA) as a dual-sites adsorbent [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 289-298. |
[7] | Dongyan Li, Xi Tang, Shasha Feng. Humidity-control assists high-efficient coal fly ash removal by PTFE membrane [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 88-95. |
[8] | Kai Liang, Saimeng Jin, Hengzhi Chen, Jingzheng Ren, Weifeng Shen, Shun'an Wei. Parametric optimization of packed bed for activated coal fly ash waste heat recovery using CFD techniques [J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 518-525. |
[9] | Qili Qiu, Xuguang Jiang, Guojun Lü, Zhiliang Chen, Shengyong Lu, Mingjiang Ni, Jianhua Yan, Xiaobing Deng. Degradation of PCDD/Fs in MSWI fly ash using a microwave-assisted hydrothermal process [J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1708-1715. |
[10] | Yong Liu, Guodong Wang, Lu Wang, Xianlong Li, Qiong Luo, Ping Na. Zeolite P synthesis based on fly ash and its removal of Cu(Ⅱ) and Ni (Ⅱ) ions [J]. Chin.J.Chem.Eng., 2019, 27(2): 341-348. |
[11] | Min Xia, Chunsong Ye, Kewu Pi, Defu Liu, Andrea R. Gerson. Cr(Ⅲ) removal from simulated solution using hydrous magnesium oxide coated fly ash: Optimization by response surface methodology (RSM) [J]. Chin.J.Chem.Eng., 2018, 26(5): 1192-1199. |
[12] | Ming Lei, Jing Hai, Jiang Cheng, Jiawei Lu, Jieru Zhang, Tao You. Variation of toxic pollutants emission during a feeding cycle from an updraft fixed bed gasifier for disposing rural solid waste [J]. Chin.J.Chem.Eng., 2018, 26(3): 608-613. |
[13] | Song Zhang, Zhibao Huo, Dezhang Ren, Jiang Luo, Jun Fu, Lu Li, Fangming Jin. Catalytic conversion of ethyl lactate to 1,2-propanediol over CuO [J]. Chin.J.Chem.Eng., 2016, 24(1): 126-131. |
[14] | Zhuannian Liu, Yuan Liu. Structure and properties of forming adsorbents prepared from different particle sizes of coal fly ash [J]. Chin.J.Chem.Eng., 2015, 23(1): 290-295. |
[15] | Yusheng Wu, Ping Xu, Jiao Chen, Laishi Li, Mingchun Li . Effect of Temperature on Phase and Alumina Extraction Efficiency of the Product from Sintering Coal Fly Ash with Ammonium Sulfate [J]. , 2014, 22(11/12): 1363-1367. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 2
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 19
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||