[1] Ofgem, Ofgem updates price cap level and tightens up rules on suppliers, 2022[2022-10-23]. https://www.ofgem.gov.uk/publications/ofgem-updates-price-cap-level-and-tightens-rules-suppliers. [2] State Grid Corporation of China, 2022[2022-10-23]. http://www.cq.sgcc.com.cn/html/main/col8/2022-08/11/20220811100310407346055_1.html. [3] S.S. Anandan, J. Sundarababu, A comprehensive review on mobilized thermal energy storage, energy Sources Part A Recovery Util. Environ. Eff. (2021) 1-24. [4] G. Bianchi, G.P. Panayiotou, L. Aresti, S.A. Kalogirou, G.A. Florides, K. Tsamos, S.A. Tassou, P. Christodoulides, Estimating the waste heat recovery in the European union industry, Energy Ecol. Environ. 4 (5) (2019) 211-221. [5] T. jia, J.P. Huang, R. Li, P. He, Y.J. Dai, Status and prospect of solar heat for industrial processes in China, Renew. Sustain. Energy Rev. 90 (2018) 475-489. [6] Y.L. He, Research on major common basic problems of efficient and comprehensive utilization of industrial waste heat, Chinese Science Bulletin. 61 (17) (2016)1856-1857. [7] The latest technology of power generation from waste heat (low temperature waste heat) 2021[2022-12-12]. http://www.doc88.com/p-54859541831095.html. [8] Z.Y. Xu, H.C. Mao, D.S. Liu, R.Z. Wang, Waste heat recovery of power plant with large scale serial absorption heat pumps, Energy 165 (2018) 1097-1105. [9] Y. Ammar, S. Joyce, R. Norman, Y.D. Wang, A.P. Roskilly, Low grade thermal energy sources and uses from the process industry in the UK, Appl. Energy 89 (1) (2012) 3-20. [10] B. Linnhoff, J.R. Flower, Synthesis of heat exchanger networks: I. systematic generation of energy optimal networks, AIChE. J. 24 (4) (1978) 633-642. [11] Y.D. Lang, L.T. Biegler, I.E. Grossmann, Simultaneous optimization and heat integration with process simulators, Comput. Chem. Eng. 12 (4) (1988) 311-327. [12] Z.Y. Xu, R.Z. Wang, C. Yang, Perspectives for low-temperature waste heat recovery, Energy 176 (2019) 1037-1043. [13] B.M. Dai, Q.L. Wang, S.C. Liu, J.N. Zhang, Y.B. Wang, Z.A. Kong, Y. Chen, D.B. Wang, Multi-objective optimization analysis of combined heating and cooling transcritical CO2 system integrated with mechanical subcooling utilizing hydrocarbon mixture based on machine learning, Energy Convers. Manag. 301 (2024) 118057. [14] S.M. Alirahmi, T. Gundersen, A. Arabkoohsar, J.J. Klemes, G. Sin, H.S. Yu, Process design, integration, and optimization of a novel compressed air energy storage for the coproduction of electricity, cooling, and water, Renew. Sustain. Energy Rev. 189 (2024) 114034. [15] S.O. Oyedepo, B.A. Fakeye, Waste heat recovery technologies: pathway to sustainable energy development, J. Therm. Eng. 7 (1) (2021) 324-348. [16] M. Anwar, A. Mehdizadeh, N. Karimi, Waste heat recovery from a green ammonia production plant by Kalina and vapour absorption refrigeration cycles: a comparative energy, exergy, environmental and economic analysis, Sustain. Energy Technol. Assess. 69 (2024) 103916. [17] O. Kose, Y. Koc, H. Yagli, Is Kalina cycle or organic Rankine cycle for industrial waste heat recovery applications? A detailed performance, economic and environment based comprehensive analysis, Process. Saf. Environ. Prot. 163 (2022) 421-437. [18] S. Mukherjee, A. Asthana, M. Howarth, J.I. Chowdhury, Techno-economic assessment of waste heat recovery technologies for the food processing industry, Energies 13 (23) (2020) 6446. [19] G. Oluleye, M. Jobson, R. Smith, A hierarchical approach for evaluating and selecting waste heat utilization opportunities, Energy 90 (2015) 5-23. [20] S. Bruckner, S. Liu, L. Miro, M. Radspieler, L.F. Cabeza, E. Lavemann, Industrial waste heat recovery technologies: an economic analysis of heat transformation technologies, Appl. Energy 151 (2015) 157-167. [21] Z.M. Tan, X. Feng, M.B. Yang, Y.F. Wang, Energy and economic performance comparison of heat pump and power cycle in low grade waste heat recovery, Energy 260 (2022) 125149. [22] N. Gangar, S. Macchietto, C.N. Markides, Recovery and utilization of low-grade waste heat in the oil-refining industry using heat engines and heat pumps: an international technoeconomic comparison, Energies 13 (10) (2020) 2560. [23] G. Kosmadakis, Industrial waste heat potential and heat exploitation solutions, Appl. Therm. Eng. 246 (2024) 122957. [24] R. Law, A. Harvey, D. Reay, Opportunities for low-grade heat recovery in the UK food processing industry, Appl. Therm. Eng. 53 (2) (2013) 188-196. [25] G. Oluleye, N. Jiang, R. Smith, M. Jobson, A novel screening framework for waste heat utilization technologies, Energy 125 (2017) 367-381. [26] Z.M. Tan, X. Feng, Y.F. Wang, Performance comparison of different heat pumps in low-temperature waste heat recovery, Renew. Sustain. Energy Rev. 152 (2021) 111634. [27] Z. Tan, X. Feng, Y.F. Wang, Performance comparison of absorption heat pump and refrigeration in low temperature waste heat recovery, Chem. Eng. Trans. 81 (2014) 151-156. [28] The calculated formula between saturated vapor pressure and temperature, 2016[2022-12-13]. https://www.doc88.com/p-3874510139253.html?r=1. [29] Z.Q. Zhu, Y.T. Wu, Chemical Engineering Thermodynamics (3rd Ed.), Chemical Industry Press, Beijing, 2016. [30] D.M. van de Bor, C.A. Infante Ferreira, Quick selection of industrial heat pump types including the impact of thermodynamic losses, Energy 53 (2013) 312-322. [31] W.D. Seider, J.D. Seader, D.R. Lewin, S. Widagdo, Product and process design principles (Third Edition), John Wiley & Sons, Inc, the United States of America, 2009. [32] D.X. Liu, The Concept and Methods of Exergy Analysis, Chemical Industry Press, Beijing, 2021. [33] D. Zhang, M.B. Yang, X. Feng, Exergy and exergoeconomic analyses for integration of aromatics separation with aromatics upgrading, Front. Chem. Sci. Eng. 17 (2) (2023) 183-193. [34] C.H. He, X. Feng, Principles of Chemical Engineering, Science Press, Beijing, 2007. |