[1] M.A. Rosen, S. Koohi-Fayegh, The prospects for hydrogen as an energy carrier: An overview of hydrogen energy and hydrogen energy systems, Energy Ecol. Environ. 1 (1) (2016) 10-29. [2] J.O. Abe, A.P.I. Popoola, E. Ajenifuja, O.M. Popoola, Hydrogen energy, economy and storage: Review and recommendation, Int. J. Hydrog. Energy 44 (29) (2019) 15072-15086. [3] N. Guerrero Moreno, M. Cisneros Molina, D. Gervasio, J.F. Perez Robles, Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost, Renew. Sustain. Energy Rev. 52 (2015) 897-906. [4] B.G. Pollet, S.S. Kocha, I. Staffell, Current status of automotive fuel cells for sustainable transport, Curr. Opin. Electrochem. 16 (2019) 90-95. [5] E. Middelman, W. Kout, B. Vogelaar, J. Lenssen, E. de Waal, Bipolar plates for PEM fuel cells, J. Power Sources 118 (1-2) (2003) 44-46. [6] E. Planes, L. Flandin, N. Alberola, Polymer composites bipolar plates for PEMFCs, Energy Procedia 20 (2012) 311-323. [7] T. Wilberforce, Z. El Hassan, E. Ogungbemi, O. Ijaodola, F.N. Khatib, A. Durrant, J. Thompson, A. Baroutaji, A.G. Olabi, A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells, Renew. Sustain. Energy Rev. 111 (2019) 236-260. [8] K.N. Xiong, W. Wu, S.F. Wang, L. Zhang, Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review, Appl. Energy 301 (2021) 117443. [9] Q.S. Liu, F.C. Lan, C.J. Zeng, J.Q. Chen, J.F. Wang, A review of proton exchange membrane fuel cell’s bipolar plate design and fabrication process, J. Power Sources 538 (2022) 231543. [10] L.S. Freire, E. Antolini, M. Linardi, E.I. Santiago, R.R. Passos, Influence of operational parameters on the performance of PEMFCs with serpentine flow field channels having different (rectangular and trapezoidal) cross-section shape, Int. J. Hydrog. Energy 39 (23) (2014) 12052-12060. [11] A. Mohammedi, Y. Sahli, H. Ben Moussa, 3D investigation of the channel cross-section configuration effect on the power delivered by PEMFCs with straight channels, Fuel 263 (2020) 116713. [12] F. Ramin, H. Sadeghifar, A. Torkavannejad, Flow field plates with trap-shape channels to enhance power density of polymer electrolyte membrane fuel cells, Int. J. Heat Mass Transf. 129 (2019) 1151-1160. [13] Z. Zhang, F. Bai, P. He, Z.X. Li, W.Q. Tao, A novel cathode flow field for PEMFC and its performance analysis, Int. J. Hydrog. Energy 48 (63) (2023) 24459-24480. [14] E. Rahmani, T. Moradi, S. Ghandehariun, G.F. Naterer, A. Ranjbar, Enhanced mass transfer and water discharge in a proton exchange membrane fuel cell with a raccoon channel flow field, Energy 264 (2023) 126115. [15] A.A. Ebrahimzadeh, I. Khazaee, A. Fasihfar, Experimental and numerical investigation of obstacle effect on the performance of PEM fuel cell, Int. J. Heat Mass Transf. 141 (2019) 891-904. [16] J. Kim, G. Luo, C.Y. Wang, Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells, J. Power Sources 365 (2017) 419-429. [17] S. Barati, B. Khoshandam, M.M. Ghazi, An investigation of channel blockage effects on hydrogen mass transfer in a proton exchange membrane fuel cell with various geometries and optimization by response surface methodology, Int. J. Hydrog. Energy 43 (48) (2018) 21928-21939. [18] G.D. Xia, X.Y. Zhang, D.D. Ma, Effects of baffle position in serpentine flow channel on the performance of proton exchange membrane fuel cells, Chin. J. Chem. Eng. 69 (2024) 250-262. [19] Y. Yin, S.Y. Wu, Y.Z. Qin, O.N. Otoo, J.F. Zhang, Quantitative analysis of trapezoid baffle block sloping angles on oxygen transport and performance of proton exchange membrane fuel cell, Appl. Energy 271 (2020) 115257. [20] Y.H. Cai, D. Wu, J.M. Sun, B. Chen, The effect of cathode channel blockages on the enhanced mass transfer and performance of PEMFC, Energy 222 (2021) 119951. [21] H. Chen, H. Guo, F. Ye, C.F. Ma, Forchheimer’s inertial effect on liquid water removal in proton exchange membrane fuel cells with baffled flow channels, Int. J. Hydrog. Energy 46 (3) (2021) 2990-3007. [22] S.Y. Zhang, Z.G. Qu, H.T. Xu, F.K. Talkhoncheh, S. Liu, Q. Gao, A numerical study on the performance of PEMFC with wedge-shaped fins in the cathode channel, Int. J. Hydrog. Energy 46 (54) (2021) 27700-27708. [23] B.W. Wang, W.M. Chen, F.W. Pan, S.Y. Wu, G.B. Zhang, J.W. Park, B. Xie, Y. Yin, K. Jiao, A dot matrix and sloping baffle cathode flow field of proton exchange membrane fuel cell, J. Power Sources 434 (2019) 226741. [24] Z.J. Li, S.B. Wang, S. Yao, X.K. Wang, W.W. Li, T. Zhu, X.F. Xie, Experimental and numerical study on improvement performance by wave parallel flow field in a proton exchange membrane fuel cell, Chin. J. Chem. Eng. 45 (2022) 90-102. [25] E. Carcadea, I. Stefanescu, R. Ionete, H. Ene, D. Ingham, L. Ma, PEM fuel cell geometry optimisation using mathematical modeling, Int. J. Multiphys. 2 (3) (2008) 313-326. [26] A. Aiyejina, M.K.S. Sastry, PEMFC flow channel geometry optimization: A review, J. Fuel Cell Sci. Technol. 9 (1) (2012) 011011. [27] W.T. Pan, P.H. Wang, X.L. Chen, F.C. Wang, G.C. Dai, Combined effects of flow channel configuration and operating conditions on PEM fuel cell performance, Energy Convers. Manag. 220 (2020) 113046. [28] S.R. Badduri, G.N. Srinivasulu, S.S. Rao, Influence of bio-inspired flow channel designs on the performance of a PEM fuel cell, Chin. J. Chem. Eng. 28 (3) (2020) 824-831. [29] F. Gong, X.L. Yang, X. Zhang, Z.Q. Mao, W.T. Gao, C. Wang, The study of Tesla valve flow field on the net power of proton exchange membrane fuel cell, Appl. Energy 329 (2023) 120276. [30] S.Y. Zhang, S. Liu, H.T. Xu, G.J. Liu, K. Wang, Performance of proton exchange membrane fuel cells with honeycomb-like flow channel design, Energy 239 (2022) 122102. [31] N. Li, W.T. Wang, R.Y. Xu, J.H. Zhang, H.P. Xu, Design of a novel nautilus bionic flow field for proton exchange membrane fuel cell by analyzing performance, Int. J. Heat Mass Transf. 200 (2023) 123517. [32] H.Z. Huang, X. Li, S.W. Li, X.Y. Guo, M.X. Liu, T.Y. Wang, H. Lei, Evaluating the effect of refined flow channels in a developed biomimetic flow field on PEMFC performance, Energy 266 (2023) 126442. [33] Y. Kerkoub, A. Benzaoui, F. Haddad, Y.K. Ziari, Channel to rib width ratio influence with various flow field designs on performance of PEM fuel cell, Energy Convers. Manag. 174 (2018) 260-275. [34] M.Z. Chowdhury, O. Genc, S. Toros, Numerical optimization of channel to land width ratio for PEM fuel cell, Int. J. Hydrog. Energy 43 (23) (2018) 10798-10809. [35] L.C. Xia, Q.D. Xu, Q.J. He, M. Ni, M. Seng, Numerical study of high temperature proton exchange membrane fuel cell (HT-PEMFC) with a focus on rib design, Int. J. Hydrog. Energy 46 (40) (2021) 21098-21111. [36] Z.H. Zhou, D.K. Qiu, L.F. Peng, X.M. Lai, Channel/rib patterns optimization of a proton exchange membrane fuel cell by combining down-the-channel performance model and genetic algorithm, Int. J. Heat Mass Transf. 183 (2022) 122235. [37] V. Mishra, F. Yang, R. Pitchumani, Measurement and prediction of electrical contact resistance between gas diffusion layers and bipolar plate for applications to PEM fuel cells, J. Fuel Cell Sci. Technol. 1 (1) (2004) 2-9. [38] M.S. Ismail, D.B. Ingham, L. Ma, M. Pourkashanian, The contact resistance between gas diffusion layers and bipolar plates as they are assembled in proton exchange membrane fuel cells, Renew. Energy 52 (2013) 40-45. [39] S. Laedre, O.E. Kongstein, A. Oedegaard, F. Seland, H. Karoliussen, Measuring in situ interfacial contact resistance in a proton exchange membrane fuel cell, J. Electrochem. Soc. 166 (13) (2019) F853-F859. [40] S. Laedre, C.M. Craciunescu, T. Khoza, N. Vaszilcsin, A. Kellenberger, V. Bolocan, I. Mitelea, A. Ercuta, Issues regarding bipolar plate-gas diffusion layer interfacial contact resistance determination, J. Power Sources 530 (2022) 231275. [41] H. Heidary, M.J. Kermani, B. Dabir, Influences of bipolar plate channel blockages on PEM fuel cell performances, Energy Convers. Manag. 124 (2016) 51-60. [42] P.C. Dong, G.N. Xie, M. Ni, The mass transfer characteristics and energy improvement with various partially blocked flow channels in a PEM fuel cell, Energy 206 (2020) 117977. [43] H. Ju, H. Meng, C.Y. Wang, A single-phase, non-isothermal model for PEM fuel cells, Int. J. Heat Mass Transf. 48 (7) (2005) 1303-1315. [44] H. Heidary, M.J. Kermani, A.K. Prasad, S.G. Advani, B. Dabir, Numerical modelling of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells, Int. J. Hydrog. Energy 42 (4) (2017) 2265-2277. [45] J. Macedo-Valencia, J.M. Sierra, S.J. Figueroa-Ramirez, S.E. Diaz, M. Meza, 3D CFD modeling of a PEM fuel cell stack, Int. J. Hydrog. Energy 41 (48) (2016) 23425-23433. [46] W. Yuan, Y. Tang, M.Q. Pan, Z.T. Li, B. Tang, Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance, Renew. Energy 35 (3) (2010) 656-666. [47] P.F. Feng, L.G. Tan, Y.C. Cao, D. Chen, Numerical investigations of two-phase flow coupled with species transport in proton exchange membrane fuel cells, Energy 278 (2023) 127918. |