Chinese Journal of Chemical Engineering ›› 2025, Vol. 87 ›› Issue (11): 299-312.DOI: 10.1016/j.cjche.2025.05.032
Previous Articles Next Articles
Xiaolu Xu1, Linjun Wang1, Qingsong Hu1, Jie Ren2, Fu Yang3, Ruiyan Sun4, Zhenchen Tang1, Huanhao Chen1,5, Feng Zeng1,5
Received:2024-12-30
Revised:2025-04-15
Accepted:2025-05-05
Online:2025-07-18
Published:2025-11-28
Contact:
Feng Zeng,E-mail:zeng@njtech.edu.cn
Supported by:Xiaolu Xu1, Linjun Wang1, Qingsong Hu1, Jie Ren2, Fu Yang3, Ruiyan Sun4, Zhenchen Tang1, Huanhao Chen1,5, Feng Zeng1,5
通讯作者:
Feng Zeng,E-mail:zeng@njtech.edu.cn
基金资助:Xiaolu Xu, Linjun Wang, Qingsong Hu, Jie Ren, Fu Yang, Ruiyan Sun, Zhenchen Tang, Huanhao Chen, Feng Zeng. Assessing the potential of higher alcohols as green fuels for carbon circularity[J]. Chinese Journal of Chemical Engineering, 2025, 87(11): 299-312.
Xiaolu Xu, Linjun Wang, Qingsong Hu, Jie Ren, Fu Yang, Ruiyan Sun, Zhenchen Tang, Huanhao Chen, Feng Zeng. Assessing the potential of higher alcohols as green fuels for carbon circularity[J]. 中国化学工程学报, 2025, 87(11): 299-312.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2025.05.032
| [1] J. Rogelj, D. Shindell, K. Jiang, S. Fifita, P. Forster, V. Ginzburg, C. Handa, H. Kheshgi, S. Kobayashi, E. Kriegler, Mitigation pathways compatible with 1.5 ℃ in the context of sustainable development, Global warming of 1.5 ℃, Intergovernmental Panel on Climate Change, 2018. [2] R.E. Zeebe, History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification, Annu. Rev. Earth Planet. Sci. 40 (2012) 141-165. [3] C.S. Song, Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing, Catal. Today 115 (1-4) (2006) 2-32. [4] N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. USA 103 (43) (2006) 15729-15735. [5] A.I. Osman, M. Nasr, A.S. Eltaweil, M. Hosny, M. Farghali, A.S. Al-Fatesh, D.W. Rooney, E.M. Abd El-Monaem, Advances in hydrogen storage materials: harnessing innovative technology, from machine learning to computational chemistry, for energy storage solutions, Int. J. Hydrog. Energy 67 (2024) 1270-1294. [6] M. Yang, R. Hunger, S. Berrettoni, B. Sprecher, B.D. Wang, A review of hydrogen storage and transport technologies, Clean Energy 7 (1) (2023) 190-216. [7] K. Liu, C.X. He, Y.Z. Yu, C.Y. Guo, S.M. Lin, J.Y. Jiang, A study of hydrogen leak and explosion in different regions of a hydrogen refueling station, Int. J. Hydrog. Energy 48 (37) (2023) 14112-14126. [8] P.A. Fotis Rigas, Hydrogen safety, United States, 2012. [9] G.A. Olah, A. Goeppert, G.K. Surya Prakash, Beyond Oil and Gas: The Methanol Economy, John wiley & sons, United States, 2018. [10] F. Zeng, C. Mebrahtu, X.Y. Xi, L.F. Liao, J. Ren, J.X. Xie, H.J. Heeres, R. Palkovits, Catalysts design for higher alcohols synthesis by CO2 hydrogenation: Trends and future perspectives, Appl. Catal. B Environ. 291 (2021) 120073. [11] Y.M. He, F.H. Muller, R. Palkovits, F. Zeng, C. Mebrahtu, Tandem catalysis for CO2 conversion to higher alcohols: a review, Appl. Catal. B Environ. Energy 345 (2024) 123663. [12] S.L. Liu, Y.M. He, W.J. Fu, J. Chen, J. Ren, L.F. Liao, R.Y. Sun, Z.C. Tang, C. Mebrahtu, F. Zeng, Hetero-site cobalt catalysts for higher alcohols synthesis by CO2 hydrogenation: a review, J. CO2 Util. 67 (2023) 102322. [13] C. Bae, J. Kim, Alternative fuels for internal combustion engines, Proc. Combust. Inst. 36 (3) (2017) 3389-3413. [14] G. Di Blasio, A.K. Agarwal, G. Belgiorno, P.C. Shukla, Application of Clean Fuels in Combustion Engines. Springer Nature Singapore, (2022). [15] A.K. Agarwal, Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines, Prog. Energy Combust. Sci. 33 (3) (2007) 233-271. [16] S. Verhelst, J.W. Turner, L. Sileghem, J. Vancoillie, Methanol as a fuel for internal combustion engines, Prog. Energy Combust. Sci. 70 (2019) 43-88. [17] D. Pashchenko, Thermochemical waste-heat recuperation as on-board hydrogen production technology, Int. J. Hydrog. Energy 46 (57) (2021) 28961-28968. [18] D. Pashchenko, Low-grade heat utilization in the methanol-fired gas turbines through a thermochemical fuel transformation, Therm. Sci. Eng. Prog. 36 (2022) 101537. [19] D. Pashchenko, M. Gnutikova, I. Karpilov, Comparison study of thermochemical waste-heat recuperation by steam reforming of liquid biofuels, Int. J. Hydrog. Energy 45 (7) (2020) 4174-4181. [20] S. Gehrmann, N. Tenhumberg, Production and use of sustainable C2-C4 alcohols-an industrial perspective, Chem. Ing. Tech. 92 (10) (2020) 1444-1458. [21] A. Chaudhary, R.K. Rathour, P. Solanki, P. Mehta Kakkar, S. Pathania, A. Walia, R.R. Baadhe, R.K. Bhatia, Recent technological advancements in biomass conversion to biofuels and bioenergy for circular economy roadmap, Renew. Energy 244 (2025) 122714. [22] B. Phalan, The social and environmental impacts of biofuels in Asia: an overview, Appl. Energy 86 (2009) S21-S29. [23] Y.M. He, S.L. Liu, W.J. Fu, J. Chen, Y.P. Zhai, X.X. Bi, J. Ren, R.Y. Sun, Z.C. Tang, C. Mebrahtu, F. Zeng, Assessing the efficiency of CO2 hydrogenation for emission reduction: Simulating ethanol synthesis process as a case study, Chem. Eng. Res. Des. 195 (2023) 106-115. [24] X.Y. Xi, F. Zeng, H. Zhang, X.F. Wu, J. Ren, T. Bisswanger, C. Stampfer, J.P. Hofmann, R. Palkovits, H.J. Heeres, CO2 hydrogenation to higher alcohols over K-promoted bimetallic Fe-In catalysts on a Ce-ZrO2 support, ACS Sustainable Chem. Eng. 9 (18) (2021) 6235-6249. [25] X. Jiang, X.W. Nie, X.W. Guo, C.S. Song, J.G. Chen, Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis, Chem. Rev. 120 (15) (2020) 7984-8034. [26] Y.M. He, S.L. Liu, W.J. Fu, C. Wang, C. Mebrahtu, R.Y. Sun, F. Zeng, Thermodynamic analysis of CO2 hydrogenation to higher alcohols (C2-4OH): effects of isomers and methane, ACS Omega 7 (19) (2022) 16502-16514. [27] M.Z.M. Sahak, Nik Mohd Radi Nik Mohd Daud, M.M.M. Thant, E.A. Jones, Gold Hydrogen - New Opportunities from Surface Processing PerspectiveOffshore Technology Conference Asia. February 27-March 1, 2024. Kuala Lumpur, Malaysia. OTC, (2024) D021S005R006. [28] L. Wang, Z.J. Jin, X. Chen, Y.T. Su, X.W. Huang, The origin and occurrence of natural hydrogen, Energies 16 (5) (2023) 2400. [29] O. Jackson, S.R. Lawrence, I.P. Hutchinson, A.E. Stocks, A.C. Barnicoat, M. Powney, Natural hydrogen: sources, systems and exploration plays, Geoenergy 2 (1) (2024) geoenergy2024-geoenergy2022. [30] N. Armaroli, V. Balzani, The hydrogen issue, ChemSusChem 4 (1) (2011) 21-36. [31] A.I. Osman, N. Mehta, A.M. Elgarahy, M. Hefny, A. Al-Hinai, A.H. Al-Muhtaseb, D.W. Rooney, Hydrogen production, storage, utilisation and environmental impacts: a review, Environ. Chem. Lett. 20 (1) (2022) 153-188. [32] H. Khasawneh, M.N. Saidan, M. Al-Addous, Utilization of hydrogen as clean energy resource in chlor-alkali process, Energy Explor. Exploit. 37 (3) (2019) 1053-1072. [33] L.F. Liao, M.Y. Li, Y.L. Yin, X. Tan, R.X. Du, Q.T. Zhong, F. Zeng, Ti-mesh bipolar plate design and optimization for enhanced PEM electrolyzer performance in water splitting, Int. J. Hydrog. Energy 64 (2024) 981-989. [34] F. Zeng, C. Mebrahtu, L.F. Liao, A.K. Beine, R. Palkovits, Stability and deactivation of OER electrocatalysts: a review, J. Energy Chem. 69 (2022) 301-329. [35] J.T. Wei, M. Wang, F.C. Wang, X.D. Song, G.S. Yu, Y.R. Liu, H. Vuthaluru, J. Xu, Y. Xu, H. Zhang, S. Zhang, A review on reactivity characteristics and synergy behavior of biomass and coal co-gasification, Int. J. Hydrog. Energy 46 (33) (2021) 17116-17132. [36] S.A. Bhat, J. Sadhukhan, Process intensification aspects for steam methane reforming: an overview, AlChE. J. 55 (2) (2009) 408-422. [37] L. Paturzo, F. Gallucci, A. Basile, P. Pertici, N. Scalera, G. Vitulli, Partial oxidation of methane in a catalytic ruthenium membrane reactor, Ind. Eng. Chem. Res. 42 (13) (2003) 2968-2974. [38] G. Alfke, W.W. Irion, O.S. Neuwirth, Oil refining, Ullmann's Encyclopedia of Industrial Chemistry 25 (2000) 208-261. [39] G.F. Liu, H. Hagelin-Weaver, B. Welt, A concise review of catalytic synthesis of methanol from synthesis gas, Waste 1 (1) (2023) 228-248. [40] M. Bowker, Methanol synthesis from CO2 hydrogenation, ChemCatChem 11 (17) (2019) 4238-4246. [41] Y. Lin, S. Tanaka, Ethanol fermentation from biomass resources: current state and prospects, Appl. Microbiol. Biotechnol. 69 (6) (2006) 627-642. [42] N.S. Hidzir, A. Som, Z. Abdullah, Ethanol production via direct hydration of ethylene: A review, International conference on global sustainability and chemical engineering (ICGSE), 2014, pp. 1-6. [43] X.Y. Xi, F. Zeng, H.T. Cao, C. Cannilla, T. Bisswanger, S. de Graaf, Y.T. Pei, F. Frusteri, C. Stampfer, R. Palkovits, H.J. Heeres, Enhanced C3+ alcohol synthesis from syngas using KCoMoSx catalysts: effect of the Co-Mo ratio on catalyst performance, Appl. Catal. B Environ. 272 (2020) 118950. [44] F. Zeng, X.Y. Xi, H.T. Cao, Y.T. Pei, H.J. Heeres, R. Palkovits, Synthesis of mixed alcohols with enhanced C3+ alcohol production by CO hydrogenation over potassium promoted molybdenum sulfide, Appl. Catal. B Environ. 246 (2019) 232-241. [45] D. Xu, Y.Q. Wang, M.Y. Ding, X.L. Hong, G.L. Liu, S.C.E. Tsang, Advances in higher alcohol synthesis from CO2 hydrogenation, Chem 7 (4) (2021) 849-881. [46] W.J. Fu, P. Zhenchen Tang, S.L. Liu, Y.M. He, P. Ruiyan Sun, D. Chalachew Mebrahtu, P. Feng Zeng, Thermodynamic analysis of CO2 hydrogenation to ethanol: solvent effects, ChemistrySelect 8 (6) (2023) e202203385. [47] Z.T. Mao, Z.H. Xie, J.G. Chen, Comparison of heterogeneous hydroformylation of ethylene and propylene over RhCo3/MCM-41 catalysts, ACS Catal. 11 (23) (2021) 14575-14585. [48] T. Walther, J.M. Francois, Microbial production of propanol, Biotechnol. Adv. 34 (5) (2016) 984-996. [49] L. Negahdar, X.Y. Xi, F. Zeng, J.G.M. Winkelman, H.J. Heeres, R. Palkovits, CO hydrogenation over K-Co-MoSx catalyst to mixed alcohols: a kinetic analysis, Int. J. Chem. Kinet. 53 (3) (2021) 419-427. [50] H.T. Luk, C. Mondelli, D.C. Ferre, J.A. Stewart, J. Perez-Ramirez, Status and prospects in higher alcohols synthesis from syngas, Chem. Soc. Rev. 46 (5) (2017) 1358-1426. [51] M.J. Economides, D.A. Wood, The state of natural gas, J. Nat. Gas Sci. Eng. 1 (1-2) (2009) 1-13. [52] P. Weiland, Biogas production: current state and perspectives, Appl. Microbiol. Biotechnol. 85 (4) (2010) 849-860. [53] C. Mebrahtu, F. Krebs, S. Abate, S. Perathoner, G. Centi, R. Palkovits, CO2 methanation: principles and challenges. Horizons in Sustainable Industrial Chemistry and Catalysis. Elsevier, (2019), pp 5-103. [54] S. Heyne, M. Seemann, T.J. Schildhauer, Coal and biomass gasification for SNG production, Wiley, 2016. [55] G. Liu, L. Ma, J. Liu, Huaxue huagong wuxing shuju shouce, Chemical Industry Press, Beijing, China, 2002. (in Chinese). [56] Y. Ho, Y. Tan, Y. Xie, Experimental study on the explosion limits of hydrogen under turbulent conditions, Fire Sci. Technol. 36(8) (2017) 1040-1043. [57] Gases–explosion and flammability concentration limits. [58] W. Xin, Experimental study on explosion limits and suppression of combustible liquid, Chin. J. Energ. Mater. 18(4) (2012) 439-442. [59] L.J. Huang, Y. Wang, S.F. Pei, G.D. Cui, L. Zhang, S.R. Ren, Z. Zhang, N.R. Wang, Effect of elevated pressure on the explosion and flammability limits of methane-air mixtures, Energy 186 (2019) 115840. [60] D. Kimemia, A. Van Niekerk, Is methanol a clean, efficient, healthy and safe cooking solution for Africa? Experiences of benefits, challenges and prospects for diffusion, Energy Sustain. Dev. 81 (2024) 101498. [61] F. Karimi, D. Mazaheri, M. Saei Moghaddam, A. Mataei Moghaddam, A.L. Sanati, Y. Orooji, Solid-state fermentation as an alternative technology for cost-effective production of bioethanol as useful renewable energy: a review, Biomass Convers. Biorefin. (2021), https://doi.org/10.1007/s13399-021-01875-2. [62] S. Nanda, R. Rana, D.N. Vo, P.K. Sarangi, T.D. Nguyen, A.K. Dalai, J.A. Kozinski, A spotlight on butanol and propanol as next-generation synthetic fuels. Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals. Springer Singapore, (2020), pp 05-126. [63] J. Jeon, S.J. Kim, Recent progress in hydrogen flammability prediction for the safe energy systems, Energies 13 (23) (2020) 6263. [64] S. Biswas, A.P. Kulkarni, S. Giddey, S. Bhattacharya, A review on synthesis of methane as a pathway for renewable energy storage with a focus on solid oxide electrolytic cell-based processes, Front. Energy Res. 8 (2020) 570112. [65] Control methane to slow global warming - fast, Nature 596 (7873) (2021) 461. [66] M.L. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei, D. Hissel, Hydrogen energy systems: a critical review of technologies, applications, trends and challenges, Renew. Sustain. Energy Rev. 146 (2021) 111180. [67] M.M. Rampai, C.B. Mtshali, N.S. Seroka, L. Khotseng, Hydrogen production, storage, and transportation: recent advances, RSC Adv. 14 (10) (2024) 6699-6718. [68] N. Stetson, M. Wieliczko, Hydrogen technologies for energy storage: a perspective, MRS Energy Sustain. 7 (1) (2020) 41. [69] M. Al-Breiki, Y. Bicer, Liquified hydrogen vs. liquified renewable methane: Evaluating energy consumption and infrastructure for sustainable fuels, Fuel 350 (2023) 128779. [70] F.M. Nizam Uddin Khan, M.G. Rasul, A.S.M. Sayem, N. Mandal, Maximizing energy density of lithium-ion batteries for electric vehicles: a critical review, Energy Rep. 9 (2023) 11-21. [71] K. Mazloomi, C. Gomes, Hydrogen as an energy carrier: prospects and challenges, Renew. Sustain. Energy Rev. 16 (5) (2012) 3024-3033. [72] R.P. Ye, J. Ding, W.B. Gong, M.D. Argyle, Q. Zhong, Y.J. Wang, C.K. Russell, Z.H. Xu, A.G. Russell, Q.H. Li, M.H. Fan, Y.G. Yao, CO2 hydrogenation to high-value products via heterogeneous catalysis, Nat. Commun. 10 (1) (2019) 5698. [73] K. Atsonios, K.D. Panopoulos, E. Kakaras, Thermocatalytic CO2 hydrogenation for methanol and ethanol production: Process improvements, Int. J. Hydrog. Energy 41 (2) (2016) 792-806. [74] A.S. Leyzerovich, New benchmarks for steam turbine efficiency.(Steam Turbines), Power Eng. 106(8) (2002) 37-41. [75] S. Park, K. Choi, C. Lee, S. Kim, Y. Yoo, D. Chang, Techno-economic analysis of adiabatic four-stage CO2 methanation process for optimization and evaluation of power-to-gas technology, Int. J. Hydrog. Energy 46 (41) (2021) 21303-21317. [76] S. Sarp, S. Gonzalez Hernandez, C. Chen, S.W. Sheehan, Alcohol production from carbon dioxide: methanol as a fuel and chemical feedstock, Joule 5 (1) (2021) 59-76. [77] C.G. Manning, Technology readiness levels, 2023. https://www.nasa.gov/directorates/somd/space-communications-navigation-program/technology-readiness-levels/. (Accessed February.28 2025). [78] A.A. Olajire, CO2 capture and separation technologies for end-of-pipe applications-A review, Energy 35 (6) (2010) 2610-2628. [79] H. Hekmatmehr, A. Esmaeili, M. Pourmahdi, S. Atashrouz, A. Abedi, M. Ali Abuswer, D. Nedeljkovic, M. Latifi, S. Farag, A. Mohaddespour, Carbon capture technologies: a review on technology readiness level, Fuel 363 (2024) 130898. [80] S. Karl, Start-up of world’s first commercial post-combustion coal fired CCS project: contribution of shell cansolv to SaskPower boundary dam ICCS project, Energy Procedia 63 (2014) 6106-6110. [81] H.C. Mantripragada, H.B. Zhai, E.S. Rubin, Boundary Dam or Petra Nova-Which is a better model for CCS energy supply? Int. J. Greenh. Gas Contr. 82 (2019) 59-68. [82] D.D. Zhou, X.W. Zhang, Z.W. Mo, Y.Z. Xu, X.Y. Tian, Y. Li, X.M. Chen, J.P. Zhang, Adsorptive separation of carbon dioxide: from conventional porous materials to metal-organic frameworks, EnergyChem 1 (3) (2019) 100016. [83] R. Baker, O. Alizadeh Sahraei, M.M. Dal-Cin, F. Bensebaa, A technology development matrix for carbon capture: technology status and R&D gap assessment, Front. Energy Res. 10 (2022) 908658. [84] O. Linjala, Review on post-combustion carbon capture technologies and capture of biogenic CO2 using pilot-scale equipment, LUT University, Finland, 2021. [85] Z.D. Dai, L.Y. Deng, Membranes for CO2 capture and separation: progress in research and development for industrial applications, Sep. Purif. Technol. 335 (2024) 126022. [86] C. Font-Palma, D. Cann, C. Udemu, Review of cryogenic carbon capture innovations and their potential applications, C 7 (3) (2021) 58. [87] K. Piotrzkowski, B. Yang, D.A. Izere, Post-combustion CO2 capture using desublimation technology, Chemical & Biomolecular engineering, University of Pennsylvania, Philadelphia, 2024. [88] Air liquide engineering & Construction supports decarbonization of zeeland refinery, 2021. https://engineering.airliquide.com/air-liquide-engineering-construction-supports-decarbonization-zeeland-refinery. (Accessed October.29 2024). [89] A Technological Innovation for CO2 Capture Using a Cryogenic Process, 2016. [90] S. Rezaei, A. Liu, P. Hovington, Emerging technologies in post-combustion carbon dioxide capture & removal, Catal. Today 423 (2023) 114286. [91] G. Xu, F.F. Liang, Y.P. Yang, Y. Hu, K. Zhang, W.Y. Liu, An improved CO2 separation and purification system based on cryogenic separation and distillation theory, Energies 7 (5) (2014) 3484-3502. [92] S. Sebbahi, N. Nabil, A. Alaoui-Belghiti, S. Laasri, S. Rachidi, A. Hajjaji, Assessment of the three most developed water electrolysis technologies: Alkaline Water Electrolysis, Proton Exchange Membrane and Solid-Oxide Electrolysis, Mater. Today Proc. 66 (2022) 140-145. [93] M. Muller, M. Carmo, A. Glusen, M. Hehemann, S. Saba, W. Zwaygardt, D. Stolten, Water management in membrane electrolysis and options for advanced plants, Int. J. Hydrog. Energy 44 (21) (2019) 10147-10155. [94] M. Riemer, S. Duval-Dachary, T.M. Bachmann, Environmental implications of reducing the platinum group metal loading in fuel cells and electrolysers: Anion exchange membrane versus proton exchange membrane cells, Sustain. Energy Technol. Assess. 56 (2023) 103086. [95] R.K. Kumar, P. Samuel, Designing a hydrogen generation system through PEM water electrolysis with the capability to adjust fast fluctuations in photovoltaic power, Int. J. Hydrog. Energy 82 (2024) 1-10. [96] SIEMENS, Sector coupling with green hydrogen. [97] M.A. Hubert, L.A. King, T.F. Jaramillo, Evaluating the case for reduced precious metal catalysts in proton exchange membrane electrolyzers, ACS Energy Lett. 7 (1) (2022) 17-23. [98] X.Q. Guo, H.Y. Zhu, S.Q. Zhang, Overview of electrolyser and hydrogen production power supply from industrial perspective, Int. J. Hydrog. Energy 49 (2024) 1048-1059. [99] M.E. Ivanova, R. Peters, M. Muller, S. Haas, M.F. Seidler, G. Mutschke, K. Eckert, P. Rose, S. Calnan, R. Bagacki, R. Schlatmann, C. Grosselindemann, L.A. Schafer, N.H. Menzler, A. Weber, R. van de Krol, F. Liang, F.F. Abdi, S. Brendelberger, N. Neumann, J. Grobbel, M. Roeb, C. Sattler, I. Duran, B. Dietrich, M.E. Christoph Hofberger, L. Stoppel, N. Uhlenbruck, T. Wetzel, D. Rauner, A. Hecimovic, U. Fantz, N. Kulyk, J. Harting, O. Guillon, Technological pathways to produce compressed and highly pure hydrogen from solar power, Angew. Chem. Int. Ed 62 (32) (2023) e202218850. [100] A.M. Sadeq, R.Z. Homod, A.K. Hussein, H. Togun, A. Mahmoodi, H.F. Isleem, A.R. Patil, A.H. Moghaddam, Hydrogen energy systems: Technologies, trends, and future prospects, Sci. Total Environ. 939 (2024) 173622. [101] G.L. Zhao, M.R. Kraglund, H.L. Frandsen, A.C. Wulff, S.H. Jensen, M. Chen, C.R. Graves, Life cycle assessment of H2O electrolysis technologies, Int. J. Hydrog. Energy 45 (43) (2020) 23765-23781. [102] R. Anghilante, C. Muller, M. Schmid, D. Colomar, F. Ortloff, R. Sporl, A. Brisse, F. Graf, Innovative power-to-gas plant concepts for upgrading of gasification bio-syngas through steam electrolysis and catalytic methanation, Energy Convers. Manag. 183 (2019) 462-473. [103] S.E. Wolf, F.E. Winterhalder, V. Vibhu, L.G.J. de Haart, O. Guillon, R.A. Eichel, N.H. Menzler, Solid oxide electrolysis cells-current material development and industrial application, J. Mater. Chem. A 11 (34) (2023) 17977-18028. [104] N. Onishi, Y. Himeda, Toward methanol production by CO2 hydrogenation beyond formic acid formation, Acc. Chem. Res. 57 (19) (2024) 2816-2825. [105] A.D.N. Kamkeng, M.H. Wang, J. Hu, W.L. Du, F. Qian, Transformation technologies for CO2 utilisation: current status, challenges and future prospects, Chem. Eng. J. 409 (2021) 128138. [106] S. Schemme, J.L. Breuer, R.C. Samsun, R. Peters, D. Stolten, Promising catalytic synthesis pathways towards higher alcohols as suitable transport fuels based on H2 and CO2, J. CO2 Util. 27 (2018) 223-237. [107] G. Karasek, CO2 utilization: new technologies for converting CO2 and why GIG Karasek opts for electrochemical reduction. [108] J. Murphy, D. Rusmanis, N. Gray, R. O’Shea, Circular economy approaches to integration of anaerobic digestion with power to X technologies, IEA Bioenergy Task, 2024. [109] A.G. Gebretatios, F. Banat, C.K. Cheng, A critical review of hydrogen storage: toward the nanoconfinement of complex hydrides from the synthesis and characterization perspectives, Sustainable Energy Fuels 8 (22) (2024) 5091-5130. [110] Renewable Hydrogen Compression Solutions, 2023, [111] M.C. Massaro, R. Biga, A. Kolisnichenko, P. Marocco, A.H.A. Monteverde, M. Santarelli, Potential and technical challenges of on-board hydrogen storage technologies coupled with fuel cell systems for aircraft electrification, J. Power Sources 555 (2023) 232397. [112] A. Copco, Reciprocating hydrogen compressor - power to gas - H2P. [113] A. Boretti, Technology readiness level of hydrogen storage technologies for transport, Energy Storage 6 (1) (2024) e546. [114] M. Gardiner, S. Satyapal, Energy requirements for hydrogen gas compression and liquefaction as related to vehicle storage needs, DOE Hydrogen and Fuel Cells Program Record 9013,2009. [115] M. Bracha, G. Lorenz, A. Patzelt, M. Wanner, Large-scale hydrogen liquefaction in Germany, Int. J. Hydrog. Energy 19 (1) (1994) 53-59. [116] M. Aziz, Liquid hydrogen: a review on liquefaction, storage, transportation, and safety, Energies 14 (18) (2021) 5917. [117] J. Incer-Valverde, J. Morsdorf, T. Morosuk, G. Tsatsaronis, Power-to-liquid hydrogen: exergy-based evaluation of a large-scale system, Int. J. Hydrog. Energy 48 (31) (2023) 11612-11627. [118] Y. Ali, A. Younus, A.U. Khan, A.H. Alrefai, Compressed Natural Gas (CNG) as a fuel and the associated risks: a quantitative analysis in the scenario of a developing country, J. Saf. Sci. Resil. 5 (3) (2024) 306-316. [119] L. Yalan, 2024 World LNG Report, IGU, 2024, https://www.igu.org/igu-reports/2024-world-lng-report. [120] D. Veskovic, J. Beard, M. Roberts, D. Graham, Decarbonize LNG liquefaction with pre-combustion CO2 capture technology, Gas 21 (2022) 21-24. [121] L.F. Santos, C.B.B. Costa, J.A. Caballero, M.A.S.S. Ravagnani, Design and optimization of energy-efficient single mixed refrigerant LNG liquefaction process, Braz. J. Chem. Eng. 38 (4) (2021) 669-682. [122] I. Rolo, V.A.F. Costa, F.P. Brito, Hydrogen-based energy systems: current technology development status, opportunities and challenges, Energies 17 (1) (2024) 180. [123] K. Wrobel, J. Wrobel, W. Tokarz, J. Lach, K. Podsadni, A. Czerwinski, Hydrogen internal combustion engine vehicles: a review, Energies 15 (23) (2022) 8937. [124] T. Wallner, H. Lohse-Busch, S. Gurski, M. Duoba, W. Thiel, D. Martin, T. Korn, Fuel economy and emissions evaluation of BMW Hydrogen 7 Mono-Fuel demonstration vehicles, Int. J. Hydrog. Energy 33 (24) (2008) 7607-7618. [125] B.K. Hong, S.H. Kim, C.M. Kim, Powering the future through hydrogen and polymer electrolyte membrane fuel cells, Johns. Matthey Technol. Rev. 64 (3) (2020) 236-251. [126] A. Kampker, P. Ayvaz, C. Schon, J. Karstedt, R. Forstmann, F. Welker, Challenges towards large-scale fuel cell production: Results of an expert assessment study, Int. J. Hydrog. Energy 45 (53) (2020) 29288-29296. [127] A. Boretti, Better integrating battery and fuel cells in electric vehicles, Energy Storage 6 (4) (2024) e669. [128] Y. Wang, Y.H. Pang, H. Xu, A. Martinez, K.S. Chen, PEM Fuel cell and electrolysis cell technologies and hydrogen infrastructure development-a review, Energy Environ. Sci. 15 (6) (2022) 2288-2328. [129] Milestone Order for World’s Largest Methanol dual-fuel Engine, 2021. [130] Maersk Orders Six Methanol Powered Vessels, 2023. [131] Geely Tests World’s First Methanol Hybrid Sedan in -40C Proving Grounds, 2022. [132] H. Merhoff, P. Helbig, Development and fielding of a direct methanol fuel cell, ITEA Journal of Test & Evaluation 31(1) (2010) 18. [133] M. Balat, H. Balat, Recent trends in global production and utilization of bio-ethanol fuel, Appl. Energy 86 (11) (2009) 2273-2282. [134] G. Srikrishnan, V. Shenbagamuthuraman, U. Agbulut, I. Mishra, J. Jain, S. Balusamy, K. Chinnadurai, D. Chatterjee, E. Shankar, S. Shaik, A.T. Hoang, C.A. Saleel, S.A. Khan, N. Kasianantham, Alcohol fuels in SI engines: a comprehensive state-of-the-art review on combustion, performance, and environmental impacts, J. Therm. Anal. Calorim. 149 (21) (2024) 12141-12203. [135] Ethanol blends, [136] E85 (flex fuel), [137] M.Z.F. Kamarudin, S.K. Kamarudin, M.S. Masdar, W.R.W. Daud, Review: Direct ethanol fuel cells, Int. J. Hydrog. Energy 38 (22) (2013) 9438-9453. [138] M. Brodt, K. Muller, J. Kerres, I. Katsounaros, K. Mayrhofer, P. Preuster, P. Wasserscheid, S. Thiele, The 2-propanol fuel cell: a review from the perspective of a hydrogen energy economy, Energy Technol. 9 (9) (2021) 2100164. [139] Near-zero emission natural gas truck technology proven ready for the rigors of port drayage operations, CaliforniaL Natural Gas Vehicle Partnership, 2020. [140] Achieve cleaner air and decarbonized miles today with an RNG-fueled fleet, Hgvamerica, 2023. [141] Y. Peng, X.Z. Zhao, T.L. Zuo, W.Y. Wang, X.Q. Song, A systematic literature review on port LNG bunkering station, Transp. Res. Part D Transp. Environ. 91 (2021) 102704. [142] Scania Launches three-axle LNG Tractor Unit, 2021. https://www.scania.com/uk/en/home/about-scania/newsroom/news/2021/scania-launches-three-axle-lng-tractor-unit.html. (Accessed 29 October 2024). [143] Volvo FH gas-powered. [144] L. Gao, J.X. Wang, M. Binama, Q. Li, W.H. Cai, The design and optimization of natural gas liquefaction processes: a review, Energies 15 (21) (2022) 7895. [145] V.P. Arne Ballantine, System Engineering, Bloom Energy, Everything you need to know about solid oxide fuel cells, 2019, https://newsroom.bloomenergy.com/blog/everything-you-need-to-know-about-solid-oxide-fuel-cells. (Accessed October.29 2024). [146] International Energy Agency, Global Hydrogen Review 2021, 2021, https://www.iea.org/reports/global-hydrogen-review-2021. [147] IRENA and Methanol institue (2021), Innovation Outlook : Renewable Methanol, International Renewable Energy Agency, Abu Dhabi, 2021. [148] C. Tregambi, P. Bareschino, D.P. Hanak, E. Mancusi, F. Montagnaro, F. Pepe, Techno-economic assessment of a synthetic methane production process by hydrogenation of carbon dioxide from direct air capture, Int. J. Hydrog. Energy 48 (96) (2023) 37594-37606. [149] A. Nemmour, A. Inayat, I. Janajreh, C. Ghenai, Green hydrogen-based E-fuels (E-methane, E-methanol, E-ammonia) to support clean energy transition: a literature review, Int. J. Hydrog. Energy 48 (75) (2023) 29011-29033. [150] L. Ramirez Camargo, G. Castro, K. Gruber, J. Jewell, M. Klingler, O. Turkovska, E. Wetterlund, J. Schmidt, Pathway to a land-neutral expansion of Brazilian renewable fuel production, Nat. Commun. 13 (2022) 3157. [151] US Deparment of Energy, Ethanol fueling stations, https://afdc.energy.gov/fuels/ethanol-stations. (Accessed February.28 2025). [152] US Deparment of Energy, Ethanol laws and incentives in federal, https://afdc.energy.gov/fuels/laws/ETH?state=US&utm_source=chatgpt.com. (Accessed February.28 2025). [153] Biofuels production and development in China, Iea Bioenergy, 2023. [154] D. Pashchenko, Ammonia fired gas turbines: Recent advances and future perspectives, Energy 290 (2024) 130275. [155] D. Pashchenko, R. Mustafin, Ammonia decomposition in the thermochemical waste-heat recuperation systems: a view from low and high heating value, Energy Convers. Manag. 251 (2022) 114959. [156] G. Barbieri, G. Marigliano, G. Golemme, E. Drioli, Simulation of CO2 hydrogenation with CH3OH removal in a zeolite membrane reactor, Chem. Eng. J. 85 (1) (2002) 53-59. [157] J.P. Lange, Methanol synthesis: a short review of technology improvements, Catal. Today 64 (1-2) (2001) 3-8. [158] H.H. Kung, Methanol synthesis, Catal. Rev. 22 (2) (1980) 235-259. |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
