1 Luo, X.L., Tanner, R.I., “A pseudo-time integral method for non-isothermal viscoelastic flows and its application to extrusion simulation”, Rheol. Acta, 26, 499-507 (1987). 2 Wachs, A., Clermont, J.R., “Non-isothermal viscoelastic flow computations in an axisymmetric contraction at high weissenberg numbers by a finite volume method”, J. Non-Newt. Fluid Mech., 95,147-184 (2000). 3 Peters, G.W.M., Baaijens, F.P.T., “Modelling of non-isothermal viscoelastic flows”, J. Non-Newtonian Fluid Mech., 68, 205-224 (1997). 4 Marrucci, G., “The free energy constitutive equation for polymer solutions from the dumbbell model”, J. Rheol., 16, 321-330 (1972). 5 Wiest, J.M., Phan-Thien, N., “Nonisothermal flow of polymer melts”, J. Non-Newt. Fluid Mech., 27, 333-347 (1988). 6 Dressler, M., Edwards, B.J., Ottinger, H.C., “Macroscopic thermodynamics of flowing polymeric liquids”, Rheol. Acta., 38, 117-136 (1999). 7 Luo, X.L., Tanner, R.I., “A computer study of film blowing”, Polym. Eng. Sci., 25 (10), 620-629 (1985). 8 Bird, R.B., Wiest, J.M., “Constitutive equations for polymeric liquids”, Annu. Rev. Fluid Mech., 27, 169-193 (1995). 9 Becker, L.E., McKinley, G.H., “The stability of viscoelastic creeping plane shear flows with viscous heating”, J. Non-Newt. Fluid Mech., 92, 109-133 (2000). 10 Beris, A.N., Edwards, B.J., Thermodynamics of Flowing Systems, Oxford, New York (1994). 11 Zheng, H., Yu, W., Zhou, C.X., “Numerical simulation of morphology of polymer chain coils in complex flows”, Chinese J. Polym. Sci., 23 (5), 453-462 (2005). 12 Zhao, Z.F., Ouyang, J., Zhang, L., Liu, D.F., “Numerical simulation of branched polymer melts through planar contraction with inset based on XPP model”, J. Chem. Ind. Eng. (China), 59 (4), 843-850 (2008). (in Chinese) 13 Ruan, C.L., Ouyang, J., Liu D.F., Zhang H.P., Zhao Z.F., “Micro-macro method for deterministic simulation of viscoelastic complex flow”, J. Chem. Ind. Eng. (China), 59 (12), 3050-3054 (2008). (in Chinese) 14 Huang, X., Phian-Thien, N., Tanner, R.I., “Viscoelastic flow between eccentric rotating cylinders:Unstructured control volume method”, J. Non-Newt. Fluid Mech., 64, 71-92 (1996). 15 Edussuriya, S.S., Williams, A.J., Bailey, C., “A cell-centred finite volume method for modeling viscoelastic flow”, J. Non-Newt. Fluid Mech., 117, 47-61 (2004). 16 Dou, H.S., Phian-Thien, N., “Viscoelastic flow past a confined cylinder:Instability and velocity inflection”, Chem. Eng. Sci., 62, 3909-3929 (2007). 17 Mathur, S.R., Murthy, J.Y., “A pressure-based method for unstructured meshes”, Numer. Heat Transfer B-Fund., 31, 195-215 (1997). 18 Rhie, C.M., Chow, W.L., “Numerical study of the turbulent flow past an airfoil with trailing edge separation”, AIAA, 21, 1525-1532 (1983). 19 Ruan, C.L., Ouyang, J., Liu, S.Q., “Numerical simulation of viscoelastic fluid by collocated finite volume method on unstructured meshes”, Polym. Mater. Sci. Eng., 25 (9), 160-163 (2009). (in Chinese) 20 Owen, S.J., “A survey of unstructured mesh generation technology”, In:Proceedings 7th International Meshing Roundtable, Sandia National Lab., Albuquerque, 239-267 (1998). |