1 Gao, J.X., Wang, J.F., Wang, T.F., Wang, G.R., “Progress of flue gas purification and sulfur recovery using TSA technology by carbonaceous methods in moving beds”, Chem. Ind. Eng. Prog., 28 (2), 325-333 (2009). (in Chinese) 2 Gao, J.X., Wang, T.F., Wang, G.R., Wang, J.F., “Effect of water vapor concentration in flue gas on temperature swing adsorptive desulphurization process using activated carbon”, Chin. J. Proc. Eng., 9 (1), 18-22 (2009). (in Chinese) 3 Gao, J.X., Wang, T.F., Wang, G.R., Wang, J.F., “ Kinetics of SO2 adsorption by ZL50 activated carbon for various water vapor volume fractions”, J. TsingHua Univ. (Sci. Tech.), 50 (3), 434-437 (2010). (in Chinese) 4 Gao, J.X., Wang, T.F., Wang, J.F., “Effect of SO2 volume fraction in flue gas on the adsorption behaviors adsorbed by ZL50 activated carbon and kinetic analysis”, Environ. Sci., 31 (5), 1152-1159 (2010). (in Chinese) 5 Zhao, X.S., Cai, G.Y., Wang, Z.Z., Yang, Y.H., “Sulfur dioxide removal from flue gas by means of active carbon catalyst”, Chin. J. Environ. Sci., 13 (5), 67-70/96 (1992). (in Chinese) 6 Gaur, V., Asthana, R., Verma, N., “Removal of SO2 by activated carbon fibers in the presence of O2 and H2O”, Carbon, 44 (1), 46-60 (2006). 7 Bangham, D.H., Sever, W., “An experimental investigation of the dynamical equation of the process of gas-sorption”, Phil. Mag., 49 (6), 935-944 (1925). 8 Low, M.J.D., “Kinetics of chemisorption of gases on solids”, Chem. Rev., 60 (3), 267-312 (1960). 9 Taylor, H.A., Thon N., “Kinetics of chemisorption”, J. Am. Chem. Soc., 74 (16), 4169-4173 (1952). 10 Ho, Y.S., Ng, J.C., McKay, G., “Kinetics of pollutant sorption by biosorbents:Review”, Sep. Purif. Methods, 29 (2), 189-232 (2000). 11 Lagergren, S., “Zur theorie der sogenannten adsorption gel ster stoffe”, K. Sven Vetenskapsakad. Handl., 24 (4), 1-39 (1898). 12 Boyd, G.E., Adamson, A., Myers, L.S., “The exchange adsorption of ions from aqueous solutions by organic zeolites (II) Kinetics”, J. Am. Chem. Soc., 69 (11), 2836-2848 (1947). 13 Rudzinski, W., Plazinski, W., “Studies of the kinetics of solute adsorption at solid/solution interfaces:on the possibility of distinguishing between the diffusional and the surface reaction kinetic models by studying the pseudo-first-order kinetics”, J. Phys. Chem. C, 111 (41), 15100-15110 (2007). 14 Rudzinski, W., Plazinski, W., “Kinetics of solute adsorption at solid/solution interfaces:A theoretical development of the empirical pseudo-first and pseudo-second order kinetic rate equations, based on applying the statistical rate theory of interfacial transport”, J. Phys. Chem. B, 110 (33), 16514-16525 (2006). 15 Ho, Y.S., Mckay, G., “A comparison of chemisorption kinetic models applied to pollutant removal on various Sorbents”, Process Saf. Environ. Prot. (Trans. Ichem E, Part B), 76 (4), 332-340 (1998). 16 Ho, Y.S., Mckay, G., “Pseudo-second order model for sorption processes”, Process Biochem., 34 (5), 451-465 (1999). 17 Zhang, J., Jiang, B., Li, X.G., “Sorption kinetic analysis for the removal of copper (II) by using biofilm”, Chin. J. Chem. Eng., 13 (1), 135-139 (2005). 18 Rill, C., Kolar, Z.I., Kickelbick, G., Wolterbeek, H.T., Peters, J.A., “Kinetics and thermodynamics of adsorption on hydroxyapatite of the [160Tb] Terbium complexes of the bone-targeting ligands DOTP and BPPED”, Langmuir, 25 (4), 2294-2301 (2009). 19 Rudzinski, W., Plazinski, W., “Kinetics of dyes adsorption at the solid-solution interfaces:A theoretical description based on the two-step kinetic model”, Environ. Sci. Technol., 42 (7), 2470-2475 (2008). 20 Song, H.P., Li, X.G., Sun, J.S., Yin, X.H., Wang, Y.H., Wu, Z.H., “Biosorption equilibrium and kinetics of Au(III) and Cu(II) on magnetotactic bacteria”, Chin. J. Chem. Eng., 15 (6), 847-854 (2007). 21 Tong, J.M., Wu, Z.S., Sun, X.F., Xu, X.L., Li, C., “Adsorption kinetics of β-carotene and chlorophyll onto acid-activated bentonite in model oil”, Chin. J. Chem. Eng., 16 (2), 270-276 (2008). 22 Raven, K.P., Jain, A., Loeppert, R.H., “Arsenite and arsenate adsorption on ferrihydrite:kinetics, equilibrium, and adsorption envelopes”, Environ. Sci. Technol., 32 (3), 344-349 (1998). 23 Yang, X.Y., Al-Duri, B., “Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon”, J. Colloid Interf. Sci., 287 (1), 25-34 (2005). 24 Saxena, A., Srivastava, A.K., Singh, B., “Kinetics of adsorption of 2-CEES and HD on impregnated silica nanoparticles under static conditions”, AIChE J., 55 (5), 1236-1245 (2009). 25 Acharya, J., Sahu, J.N., Mohanty, C.R., Meikap, B.C., “Removal of lead (II) from wastewater by activated carbon developed from tamarind wood by zinc chloride activation”, Chem. Eng. J., 149 (1-3), 249-262 (2009). 26 Wang, L.H., Lin, C.I., “Adsorption of lead (II) ion from aqueous solution using rice hull ash”, Ind. Eng. Chem. Res., 47 (14), 4891-4897 (2008). 27 Basha, S., Murthy, Z.V.P., Jha, B., “Removal of Cu (II) and Ni (II) from industrial effluents by brown seaweed, cystoseira indica”, Ind. Eng. Chem. Res., 48 (2), 961-975 (2009). 28 Rudzinski, W., Plazinski, W., “Theoretical description of the kinetics of solute adsorption at heterogeneous solid/solution interfaces on the possibility of distinguishing between the diffusional and surface reaction kinetics models”, Appl. Surf. Sci., 253 (13), 5827-5840 (2007). 29 Xia, X.Y., Alnoncourt, R.N.D., Strunk, J., Litvinov, S., Muhler, M., “Isothermal adsorption kinetics on heterogeneous surfaces”, Appl. Surf. Sci., 253 (13), 5851-5855 (2007). 30 Liu, Z.N., Zhou, A.N., Wang, G.R., Zhao, X.G., “Adsorption behavior of methyl orange onto modified ultrafine coal powder”, Chin. J. Chem. Eng., 17 (6), 942-948 (2009). 31 Zhang, J.S., Stanforth, R., “Slow adsorption reaction between arsenic species and goethite(α-FeOOH):diffusion or heterogeneous surface reaction control”, Langmuir, 21 (7), 2895-2901 (2005). 32 Choy, K.K.H., Porter, J.F., Mckay, G., “Intraparticle diffusion in single and multicomponent acid dye adsorption from wastewater onto carbon”, Chem. Eng. J., 103 (1-3), 133-145 (2004). 33 Baral, S.S., Das, S.N., Chaudhury, G.R., Swamy, Y.V., Rath, P., “Adsorption of Cr(VI) using thermally activated weed salvinia cucullata”, Chem. Eng. J., 139 (2), 245-255 (2008). |