1 Kaspar, M.H., Ray, W.H., “Chemometric methods for process monitoring and high-performance controller-design”, AIChE J., 38, 1593-1608 (1992). 2 Patwardhan, R.S., Lakshminarayanan, S., Shah, S.L., “Constrained nonlinear MPC using Hammerstein and Wiener models:PLS framework”, AIChE J., 44, 1611-1622 (1998). 3 Chen, J.H., Cheng, Y.C., Yea, Y.Z., “Multi-loop PID controller design using partial least squares decoupling structure”, Korean J. Chem. Eng., 22, 173-183 (2005). 4 Chen, J.H., Cheng, Y.C., “Applying partial least squares based decomposition structure to multi-loop adaptive proportional-integral-derivative controllers in nonlinear processes”, Ind. Eng. Chem. Res., 43, 5888-5898 (2004). 5 Song, K.C., Jang, P.Y., Cho, H.B., Jun, C.H., “Partial least square-based model predictive control for large-scale manufacturing processes”, IIE Transactions, 34, 881-890 (2002). 6 Jaeckle, C.M., MacGregor, J.F., “Industrial applications of product design through the inversion of latent variable models”, Chem. Intell. Lab. Syst., 50, 199-210 (2000). 7 Cerrillo, J.F., MacGregor, J.F., “Latent variable MPC for trajectory tracking in batch processes”, J. Process Control, 15, 651-663 (2005). 8 Garcia, C.E., Morari, M., “Internal model control (1) A unifying review and some new results”, Ind. Eng. Chem. Process Des. Dev., 21, 308-323 (1982). 9 Rivera, D.E., Morari, M., Skogestad, S., “Internal model control (4) PID controller design”, Ind. Eng. Chem. Process Des. Dev., 25, 252-265 (1986). 10 Wang, Q.G., Zhang, Y., Chiu, M.S., “Decoupling internal model control for multivariable systems with multiple time delays”, Chem. Eng. Sci., 57, 115-124 (2002). 11 Tan, W., Marquez, H.J., Chen, T.W., “IMC design for unstable processes with time delays”, J. Process Control, 13, 203-213 (2003). 12 Henson, M.A., Seborg, D.E., “An internal model control strategy for nonlinear-systems”, AIChE J., 37, 1065-1081 (1991). 13 Nahas, E.P., Henson, M.A., Seborg, D.E., “Nonlinear internal model control strategy for neural network models”, Comput. Chem. Eng., 16, 1039-1057 (1992). 14 Hunt, K.J., Sbarbaro, D., “Neural networks for nonlinear internal model control”, IEE Proceedings-D Control Theory and Applications, 138, 431-438 (1991). 15 Geladi, P., Kowalski, B. R., “Partial least-squares regression-A tutorial”, Analytica Chimica Acta, 185, 1-17 (1986). 16 Qin, S.J., “Recursive PLS algorithms for adaptive data modeling”, Comput. Chem. Eng., 22, 503-514 (1998). 17 Ricker, N.L., “The use of biased least-squares estimators for parameters in discrete-time pulse-response models”, Ind. Eng. Chem. Res., 27, 343-350 (1988). 18 Qin, S.J., MacAvoy, T.J., “A data-based process modeling approach and its application”, In:Proceedings of the 3rd IFAC Symposium on Dynamics and Control of Chemical Reactors, Distillation Columns, and Batch Processes, Pergamon, Oxford (1992). 19 Kaspar, M.H., Ray, W.H., “Dynamic PLS modeling for process control”, Chem. Eng. Sci., 48, 3447-3461 (1993). 20 Stanley, G., Marinogalarraga, M., MacAvoy, T.J., “Shortcut operability analysis (I) The relative disturbance gain”, Ind. Eng. Chem. Process Des. Dev., 24, 1181-1188 (1985). 21 Ogunnaike, B.A., Ray, W.H., “Multivariable controller design for linear-systems having multiple time delays”, AIChE J., 25, 1043-1057 (1979). 22 Ogunnaike, B.A., Lemaire, J.P., Morari, M., Ray, W.H., “Advanced multivariable control of a pilot-plant distillation column”, AIChE J., 29, 632-640 (1983). |