›› 2011, Vol. 19 ›› Issue (1): 1-9.
• FLUID FLOW AND TRANSPORT PHENOMENA • Next Articles
ZHANG Pan1, WANG Weiwen2, CHENG Guanghui2, LI Jianlong2
Received:
2010-06-11
Revised:
2010-11-16
Online:
2011-02-28
Published:
2011-02-28
Supported by:
张攀1, 王伟文2, 陈光辉2, 李建隆2
通讯作者:
LI Jianlong, E-mail: jlong_li@hotmail.com
基金资助:
ZHANG Pan, WANG Weiwen, CHENG Guanghui, LI Jianlong. Effect of Boundary Layers on Polycrystalline Silicon Chemical Vapor Deposition in a Trichlorosilane and Hydrogen System[J]. , 2011, 19(1): 1-9.
张攀, 王伟文, 陈光辉, 李建隆. Effect of Boundary Layers on Polycrystalline Silicon Chemical Vapor Deposition in a Trichlorosilane and Hydrogen System[J]. , 2011, 19(1): 1-9.
1 Moffat, H., Jensen, K., “Three-dimensional flow effects in silicon CVD in horizontal reactors”, J. Electrochem. Soc., 135, 459-466 (1988). 2 Vanka, S., Luo, G., Glumac, N., “Parametric effects on thin film growth and uniformity in an atmospheric pressure impinging jet CVD reactor”, J. Cryst. Growth, 267, 22-34 (2004). 3 Oh, I., Takoudis, C., Neudeck, G., “Mathematical modeling of epitaxial silicon growth in pancake Chemical Vapor Deposition reactors”, J. Electrochem. Soc., 138, 554-562 (1991). 4 Kuwana, K., Andrews, R., Grulke, E.A., Saito, K., “CFD analysis on a vortex enhanced CVD reactor design”, in Symposium on Making Functional Materials with Nanotubes held at the 2001 MRS Fall Meeting, P. Bernier, P. Ajayan, Y. Iwasa, P. Nikolaev, eds, Materials Research Society, Boston, MA, 61-66 (2001). 5 Wang, A.Y., Lee, K., Sun, C., Wen, L.S., “Simulations of the dependence of gas physical parameters on deposition variables during HFCVD diamond films”, J. Mater. Sci. Technol., 22, 599-604 (2006). 6 Luo, G., Vanka, S.P., Glumac, N., “Fluid flow and transport processes in a large area atmospheric pressure stagnation flow CVD reactor for deposition of thin films”, Int. J. Heat Mass Transfer, 47,4979-4994 (2004). 7 Oda, A., Suda, Y., Okita, A., “Numerical analysis of pressure dependence on carbon nanotube growth in CH4/H2 plasmas”, Thin Solid Films, 516, 6570-6574 (2007). 8 Leakeas, C.L., Sharif, M.A.R., “Effects of thermal diffusion and substrate temperature on silicon deposition in an impinging-jet CVD reactor”, Numer. Heat Tranfer A Appl., 44, 127-147 (2003). 9 Zhuang, Q., Guo, H., Heberlein, J., Pfender, E., “Effect of substrate temperature distribution on thermal plasma jet CVD of diamond”, Diamond Relat. Mater., 3, 319-324 (1994). 10 Xu, Q., Baciou, L., Sebban, P., Gunner, M., “Exploring the energy landscape for Q(A)(-) to Q(B) electron transfer in bacterial photosynthetic reaction centers: Effect of substrate position and tail length on the conformational gating step”, Biochemistry, 41, 10021-10025 (2002). 11 Sharifi, Y., Achenie, L.E.K., “Effect of substrate geometry on the deposition rate in chemical vapor deposition”, J. Cryst. Growth, 304,520-525 (2007). 12 Cheng, T.S., Hsiao, M.C., “Numerical investigations of geometric effects on flow and thermal fields in a horizontal CVD reactor”, J. Cryst. Growth, 310, 3097-3106 (2008). 13 Asmann, M., Borges, C., Heberlein, J., Pfender, E., “The effects of substrate rotation on thermal plasma chemical vapor deposition of diamond”, Surf. Coat. Technol., 142, 724-732 (2000). 14 Salinger, A.G., Pawlowski, R.P., Shadid, J.N., van Bloemen Waanders, B.G., “Computational analysis and optimization of a chemical vapor deposition reactor with large-scale computing”, Ind. Eng. Chem. Res., 43, 4612-4623 (2004). 15 Kunz, T., Burkert, I., Auer, R., Lovtsus, A.A., Talalaev, R.A., Makarov, Y.N., “Convection-assisted chemical vapor deposition (CoCVD) of silicon on large-area substrates”, J. Cryst. Growth, 310,1112-1117 (2008). 16 Kleijn, C., Dorsman, R., Kuijlaars, K., Okkerse, M., van Santen, H., “Multi-scale modeling of chemical vapor deposition processes for thin film technology”, J. Cryst. Growth, 303, 362-380 (2006). 17 Pierson, H., Handbook of Chemical Vapor Deposition: Principles, Technology, and Applications, Noyes Publications, NY, USA, 32-43 (1999). 18 Yang, Y., Zhang, W., “Kinetic and microstructure of SiC deposited from SiCl4 -CH4 -H2 ”, Chin. J. Chem. Eng., 17, 419-426 (2009). 19 Coltrin, M., Kee, R., Evans, G., “A mathematical model of the fluid mechanics and gas-phase chemistry in a rotating disk chemical vapor deposition reactor”, J. Electrochem. Soc., 136, 819-829 (1989). 20 Arora, R., Pollard, R., “A mathematical model for chemical vapor deposition processes influenced by surface reaction kinetics: Application to low-pressure deposition of tungsten”, J. Electrochem. Soc.,138, 1523-1537 (1991). 21 Tanimoto, S., Matsui, M., Kamisako, K., Kuroiwa, K., Tarui, Y., “Investigation on leakage current reduction of photo-CVD tantalum oxide films accomplished by active oxygen annealing”, J. Electrochem. Soc., 139, 320-328 (1992). 22 Kommu, S., Khomami, B., “High-volume single-wafer reactors for silicon epitaxy”, Ind. Eng. Chem. Res, 41, 732-743(2002). 23 Kleijn, C., “Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition—A benchmark solution”, Thin Solid Films, 365, 294-306 (2000). 24 Habuka, H., Nagoya, T., Mayusumi, M., Katayama, M., Shimada, M., Okuyama, K., “Model on transport phenomena and epitaxial growth of silicon thin film in SiHCl3 -H2 system under atmospheric pressure”, J. Cryst. Growth, 169, 61-72 (1996). 25 Yang, S., Yang, Q., Sun, Z., “Nucleation and growth of diamond on titanium silicon carbide by microwave plasma-enhanced chemical vapor deposition”, J. Cryst. Growth, 294, 452-458 (2006). 26 Mills, R., Sankar, J., Voigt, A., He, J., Ray, P., Dhandapani, B., “Role of atomic hydrogen density and energy in low power chemical vapor deposition synthesis of diamond films”, Thin Solid Films, 478,77-90 (2005). 27 Zhang, X.D., Zhang, F.R., Amanatides, E., Mataras, D., Zhao, Y., “Effect of substrate bias on the plasma enhanced chemical vapor deposition of microcrystalline silicon thin films”, Thin Solid Films,516, 6912-6918 (2008). 28 Ho, P., Balakrishna, A., Chacin, J., Thilderkvist, A., Haas, B., Comita, P., “Chemical kinetics for modelling silicon epitaxy from chlorosilanes”, In: 194th Meeting of the Electrochemical Society, The Electrochemical Society, Inc., New Jersey, 117-122 (1998). 29 Valente, G., Cavallotti, C., Masi, M., Carr, S., “Reduced order model for the CVD of epitaxial silicon from silane and chlorosilanes”, J. Cryst. Growth, 230, 247-257 (2001). 30 Balakrishna, A., Chacin, J.M., Comita, P.B., Haas, B., Ho, P., Thilderkvist, A., “Chemical kinetics for modeling silicon epitaxy from chlorosilanes”, in 194th Meeting of the Electrochemical Society, US DOE, MA,1-6 (1998). 31 Endo, H., Kuwana, K., Saito, K., Qian, D., Andrews, R., Grulke, E., “CFD prediction of carbon nanotube production rate in a CVD reactor”, Chem. Phys. Lett., 387, 307-311 (2004). 32 Khanafer, K., Lightstone, M., “Computational modeling of transport phenomena in chemical vapor deposition”, Heat Mass Transfer., 41,483-494 (2005). 33 van Santen, H., Kleijn, C., van Den Akker, H., “On turbulent flows in cold-wall CVD reactors”, J. Cryst. Growth, 212,299-310 (2000). 34 Coltrin, M., Kee, R., Miller, J., “A mathematical model of silicon chemical vapor deposition”, J. Electrochem. Soc., 133, 1206-1210 (1986). 35 Verwer, J., Sommeijer, B., Hundsdorfer, W., “RKC time-stepping for advection-diffusion-reaction problems”, J. Comput. Phys., 201, 61-79 (2004). 36 Pope, S., “Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation”, Combust. Theory Modelling, 1, 41-63 (1997). 37 Yu, M., Lin, J., Chan, T., “Numerical simulation of nanoparticle synthesis in diffusion flame reactor”, Powder Technol., 181, 9-20 (2008). 38 Kee, R., Rupley, F.M., Meeks, E., Miller, J.A., “Chemkin-III: A fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics”, Technical Report SAND968216, Sandia National Laboratories, Albuquerque, NM (1996). 39 Cai, D., Zheng, L., Wan, Y., Hariharan, A., Chandra, M., “Numerical and experimental study of polysilicon deposition on silicon tubes”, J. Cryst. Growth, 250, 41-49 (2003). 40 Cheng, T., Hsiao, M., “Computation of three-dimensional flow and thermal fields in a model horizontal chemical vapor deposition reactor”, J. Cryst. Growth, 293, 475-484 (2006). 41 del Coso, G., del Canizo, C., Luque, A., “Chemical vapor deposition model of polysilicon in a trichlorosilane and hydrogen system”, J. Electrochem. Soc., 155, D485-D491 (2008). 42 Zhang, P., Wang, W.W., Chen, G.H., Li, J.L., “Study on the chemical vapor deposition of polycrystalline silicon in a trichlorosilane and hydrogen system”, J. Synth. Crystals, 39, 495-499 (2010). 43 Salinger, A., Shadid, J., Hutchinson, S., Hennigan, G., Devine, K., Moffat, H., “Analysis of gallium arsenide deposition in a horizontal CVD reactor using massively parallel computations”, J. Crystal Growth, 203, 516-533 (1999). 44 Park, K., Pak, H., “Characteristics of three-dimensional flow, heat, and mass transfer in a chemical vapor deposition reactor”, Num. Heat Transfer A Appl., 37, 407-423 (2000). 45 De, A.K., Muralidhar, K., Eswaran, V., Wadhawan, V., “Modelling of transport phenomena in a low-pressure CVD reactor”, J. Cryst. Growth, 267, 598-612 (2004). 46 Terai, F., Kobayashi, H., Katsui, S., Tamaoki, N., Nagatomo, T., Homma, T., “High-speed rotating-disk chemical vapor deposition process for in-situ arsenic-doped polycrystalline silicon films”, Japanese Journal of Applied Physics Part 1—Regular Papers Short Notes & Review Papers, 44, 7883-7888 (2005). 47 Habuka, H., Aoyama, Y., Akiyama, S., Otsuka, T., Qu, W.F., Shimada, M., Okuyama, K., “Chemical process of silicon epitaxial growth in a SiHCl3 -H2 system”, J. Cryst. Growth, 207, 77-86 (1999). 48 Habuka, H., Suzuki, T., Yamamoto, S., Nakamura, A., Takeuchi, T., Aihara, M., “Dominant rate process of silicon surface etching by hydrogen chloride gas”, Thin Solid Films, 489, 104-110 (2005). |
[1] | Jiahao Xing, Huaizhi Han, Ruitian Yu, Wen Luo. Numerical simulation of flow and heat transfer of n-decane in sub-millimeter spiral tube at supercritical pressure [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 173-185. |
[2] | Jian Han, Xinhua Liu, Shanwei Hu, Nan Zhang, Jingjing Wang, Bin Liang. Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 182-192. |
[3] | Shengfeng Luo, Song Zhang, Yiping Zeng, Hui Zhang, Lili Zheng, Zhaopeng Xu. Study on oxygen transport and titanium oxidation in coating cracks under parallel gas flow based on LBM modelling [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 15-24. |
[4] | Jikai Dong, Bing Wang, Xinjie Wang, Chenxi Cao, Shikuan Chen, Wenli Du. Optimization of sensor deployment sequences for hazardous gas leakage monitoring and source term estimation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 169-179. |
[5] | Shuangfei Zhao, Yingying Nie, Wenyan Zhang, Runze Hu, Lianzhu Sheng, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 255-265. |
[6] | Xibao Zhang, Zhenghong Luo. Bubble size modeling approach for the simulation of bubble columns [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 194-200. |
[7] | Pan Zhang, Guanghui Chen, Weiwen Wang, Guodong Zhang, Huaming Wang. Analysis of the nutation and precession of the vortex core and the influence of operating parameters in a cyclone separator [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 1-10. |
[8] | Ye Zhang, Yong Gao, Peng Wang, Duo Na, Zhenming Yang, Jinsong Zhang. Solvent extraction with a three-dimensional reticulated hollow-strut SiC foam microchannel reactor [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 53-62. |
[9] | Mehdi Miansari, Mehdi Rajabtabar Darvishi, Davood Toghraie, Pouya Barnoon, Mojtaba Shirzad, As'ad Alizadeh. Numerical investigation of grooves effects on the thermal performance of helically grooved shell and coil tube heat exchanger [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 424-434. |
[10] | Shuai Chen, Jiahong Lan, Yu Zhang, Jia Guo, Zhikai Cao, Yong Sha. 3D multiphase flow simulation of Marangoni convection on reactive absorption of CO2 by monoethanolamine in microchannel [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 370-377. |
[11] | Jian Chen, Lingbing Bu, Yingqi Luo. Comparative study on pressure swing adsorption system for industrial hydrogen and fuel cell hydrogen [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 112-119. |
[12] | Jing Zhang, Zhongyi Ge, Wei Wang, Bin Gong, Yaxia Li, Jianhua Wu. The concave-wall jet characteristics in vertical cylinder separator with inlet baffle component [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 178-189. |
[13] | Liwang Wang, Erwen Chen, Liang Ma, Zhanghuang Yang, Zongzhe Li, Weihui Yang, Hualin Wang, Yulong Chang. Numerical simulation and experimental study of gas cyclone–liquid jet separator for fine particle separation [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 43-52. |
[14] | Jie Ju, Xianjian Duan, Bismark Sarkodie, Yanjie Hu, Hao Jiang, Chunzhong Li. Numerical simulation of flow field and residence time of nanoparticles in a 1000-ton industrial multi-jet combustion reactor [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 86-99. |
[15] | Longyun Zheng, Kai Guo, Hongwei Cai, Bo Zhang, Hui Liu, Chunjiang Liu. Investigation of mass transfer model of CO2 absorption with Rayleigh convection using multi-relaxation time lattice Boltzmann method [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 130-142. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1893
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 3635
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||