1 Suffness, M., “Toxel:from discovery to therapeutic use”, Annu. Rep. Med. Chem., 28, 305-314 (1993). 2 DeSimone, J.M., “Practical approaches to green solvents”, Science, 297 (5582), 799-803(2002). 3 Teja, A.S., Eckert, C.A., “Commentary on supercritical fluids:Research and applications”, Ind. Eng. Chem. Res., 39 (12), 4442-4444 (2000). 4 Jennings, D., Deutsch, H., Zalkow, L., Teja, A.S., “Supercritical extraction of taxol from the bark of Taxus brevifolia”, J. Supercrit. Fluid, 5 (1), 1-6 (1992). 5 Safavy, A., Raisch, K.P., Khazaeli, M.B., Buchsbaum, D.J., Bonner, J.A., “Paclitaxel derivatives for targeted therapy of cancer:Toward the development of smart taxanes”, J. Med. Chem., 42 (23), 4919-4924 (1999). 6 Yusa, S., Fukuda, K., Yamamoto, T., Ishihara, K., Morishima, Y., “Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent”, Biomacromolecules, 6 (2), 663-670 (2005). 7 Huh, K.M., Min, H.S., Lee, S.C., Lee, H.J., Kim, S., Park, K., “A new hydrotropic block copolymer micelle system for aqueous solubilization of paclitaxel”, J. Control Rel., 126 (2), 122-129 (2008). 8 Feng, S.S., Mu, L., Win, K.Y., Huang, G., “Nanoparticles of biodegradable polymers for clinical administration of paclitaxel”, Curr. Med. Chem., 11 (4), 413-424 (2004). 9 Niwa, T., Takeuchi, H., Hino, T., “Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D, L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method and the drug release behavior”, 25 (1-2), 89-98 (1993). 10 Mishima, K., Matsuyama, K., Tanabe, D., Yamauchi, S., Young, T.J., Johnston, K.P., “Microencapsulation of proteins by rapid expansion of supercritical solution with a nonsolvent”, AIChE J., 46 (4), 857-865 (2000). 11 Lee, L.Y., Wang, C.H., Smith, K.A., “Supercritacal antisolvent production of biodegradable microand nanoparticles for controlled delivery of paclitaxel”, J. Control Rel., 125 (2), 96-106 (2008). 12 Buttry, D.A., Ward, M.D., “Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance”, Chem. Rev., 92 (6), 1355-1379(1992). 13 Lu, C., Czanderna, A.W., Applications of Piezoelectric Quartz Crystal Microbalances:Methods and Phenomena, Their Applications in Science and Technology, Elsevier, New York(1984). 14 Wu, Y., Akoto-Ampaw, P., Elbaccouch, M., Hurrey, M., Wallen, S., Grant, C.S., “Quartz crystal microbalance (QCM) in high-pressure carbon dioxide (CO2):Experimental aspects of QCM theory and CO2 adsorption”, Langmuir, 20 (9), 3665-3673 (2004). 15 Park, K., Koh, M., Yoon, C., Kim, H., Kim, H., “The behavior of quartz crystal microbalance in high pressure CO2 ”, J. Supercritical Fluids, 29 (1-2), 203-212 (2004). 16 Saldana, M.D.A., Sun, L., Guigard, S.E., Temelli, F., “Comparison of the solubility of b-carotene in supercritical CO2 based on a binary and a multicomponent complex system”, J. Supercritical Fluids, 37 (3), 342-349 (2006). 17 Guigard, S.E., Hayward, G.L., Zytner, R.G., Stiver, W.H., “Measurement of solubilities in supercritical fluids using a piezoelectric quartz crystal”, Fluid Phase Equilibria, 187-188 (15), 233-246 (2001). 18 Miura, K., Otake, K., Kurosawa, S., Sako, T., Sugeta, T., Nakane, T., Sato, M., Tsuji, T., Hiaka, T., Hongo, M., “Solubility and adsorption of high pressure carbon dioxide to poly(styrene)”, Fluid Phase Equilibria, 144 (1-2), 181-189 (1998). 19 Nalesnik, C.A., Hansen, B.N., Hsu, J.T., “Solubility of pure taxol in supercritical carbon dioxide, solubility of pure taxol in supercritical carbon dioxide”, Fluid Phase Equilibria, 146 (1-2), 315-323 (1998). 20 Vandana, V., Teja, A.S., “The solubility of paclitaxel in supercritical CO2 and N2O”, Fluid Phase Equilibria, 135 (1), 83-87 (1997). 21 Dean, J.A., Lange's Handbook of Chemistry, 15th edition, McGraw-Hill, Amsterdam(1999). |