1 van't Riet, K., Smith, J.M., “The behaviours of gas-liquid mixtures near Rushton turbine blades”, Chem. Eng. Sci., 28, 1031-1037 (1973). 2 van't Riet, K., Smith, J.M., “The trailing vortex system produced by Rushton turbine agitators”, Chem. Eng. Sci., 30, 1093-1105 (1975). 3 Nienow, A.W., “Gas-liquid mixing studies:A comparison of Rushton turbine with some modern impellers”, Trans. Inst. Chem. Eng. A, 74, 417-423 (1996). 4 Khare, A.S., Niranjan, K., “An experimental investigation into the effect of impeller design on gas hold-up in a highly viscous Newtonian liquid”, Chem. Eng. Sci., 54, 1093-1100 (1999). 5 Van't Riet, K., Boom, J.M., Smith, J.M., “Power consumption, impeller coalescence and recirculation in aerated vessels”, Chem. Eng. Res. Des., 54, 124-131 (1976). 6 Warmoeskerken, M.M.C.G., Smith, J.M., “The hollow blade agitator for dispersion and mass transfer”, Chem. Eng. Res. Des., 67, 193-198 (1989). 7 Saito, F., Nienow, A.W., Chatwin, S., Moore, I.P.T., “Power, gas dispersion and homogenisation characteristics of Scaba and Rushton turbine impellers”, J. Chem. Eng. Japan, 25, 281-287 (1992). 8 Cooke, M., Heggs, P.J., “Advantages of the hollow (concave) turbine for multi-phase agitation under intense operating conditions”, Chem. Eng. Sci., 60, 5529-5543 (2005). 9 Gunkel, A.A., Weber, M.E., “Flow phenomena in stirred tanks (1) The impeller stream (2) The bulk of the tank”, AIChE J., 21, 931-949 (1975). 10 Yianneskis, M., Whitelaw, J.H., “On the structure of the trailing vortices around Rushton turbine blades”, Trans. Inst. Chem. Eng. Part A, 17, 543-550 (1993). 11 Stoots, C.M., Calabrese, R.V., “Mean velocity field relative to a Rushton turbine blade”, AIChE J., 41, 1-11 (1995). 12 Sch fer, M., Yianneskis, M., W chter, P., Durst, F., “Trailing vortices around a 45° pitched-blade impeller”, AIChE J., 44, 1233-1246 (1998). 13 Yianneskis, M., Popiolek, Z., Whitelaw, J.H., “An experimental study of the steady and unsteady flow characteristics of stirred reactors”, J. Fluid Mech., 175, 537-555 (1987). 14 Derksen, J.J., Doelman, M.S., van den Akker, H.E.A., “Three-dimensional LDA measurements in the impeller region of a turbulently stirred tank”, Exp. Fluids, 27, 522-532 (1999). 15 Sharp, K.V., Adrian, R.J., “PIV study of small-scale flow structure around a Rushton turbine”, AIChE J., 47, 766-778 (2001). 16 Escudié, R., Liné, A., “Experimental analysis of hydrodynamics in a radially agitated tank”, AIChE J., 49, 585-603 (2003). 17 Li, Z., Bao, Y., Gao, Z., “PIV experiments and large eddy simulations of single-loop flow fields in Rushton turbine stirred tanks”, Chem. Eng. Sci., 66, 1219-1231 (2011). 18 Pan, C., Min, J., Liu, X., Gao, Z., “Investigation of fluid flow in a dual Rushton impeller stirred tank using particle image velocimetry”, Chin. J. Chem. Eng., 16, 693-699 (2008). 19 Liu, X., Bao, Y., Li, Z., Gao, Z., Smith, J.M., “Particle image velocimetry study of turbulence characteristics in a vessel agitated by dual Rushton impeller”, Chin. J. Chem. Eng., 16, 700-708 (2008). 20 Costes, J., Couderc, J.P., “Study by laser doppler anemometry of the turbulent flow induced by a Rushton turbine in a stirred tank:Influence of the size of the mean flow and turbulence (units I), the spectral analysis and scales of turbulence (units II)”, Chem. Eng. Sci., 43, 2751-2772 (1988). 21 Wu, H., Patterson, G..K., “Laser Doppler measurements of turbulent flow parameters in a stirred mixer”, Chem. Eng. Sci., 44, 2207-2221 (1989). 22 Escudié, R., Bouyer, D., Liné, A., “Characterization of trailing vortices generated by a Rushton turbine”, AIChE J., 50, 75-86 (2004). 23 Jeong, J., Hussain, F., “On the identification of a vortex”, J. Fluid Mech., 285, 69-94 (1995). 24 Escudié, R., “A simplified procedure to identify trailing vortices generated by a Rushton turbine”, AIChE J., 53, 523-526 (2007). 25 Lee, K.C., Yianneskis, M., “Turbulence properties of the impeller stream of a Rushton turbine”, AIChE J., 44, 13-24 (1998). 26 Khan, F.R., Rielly, C.D., Brown, D.A.R., “Angle-resolved stereo-PIV measurements close to a down-pumping pitched-blade turbine”, Chem. Eng. Sci., 61, 2799-2806 (2006). 27 Chung, K.H.K., Barigou, M., Simmons, M.J.H., “Reconstruction of 3-D flow field inside miniature stirred vessels using a 2-D PIV technique”, Chem. Eng. Res. Des., 85, 560-567 (2007). 28 Cheng, X., “The study of fluid character for Rushton turbine in the stirred tank”, M.S. Thesis, Beijing University of Chemical Technology, China (2009). (in Chinese) 29 Ma, Z., “Local vorid fraction distribution in hot-sparged gas-liquid-solid three phase stirred tank with multi-impeller”, M.S. Thesis, Beijing University of Chemical Technology, China (2009). (in Chinese) 30 Sheng, J., Meng, H., Fox, R.O., “A large eddy PIV method for turbulence dissipation rate estimation”, Chem. Eng. Sci., 55, 4423-4434 (2000). |