1 Jones, S.E., Versalovic, J., “Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors”, BMC Microbiology, 9, 35-44(2009). 2 Cleusix, V., Lacroix, C., Vollenweider, S., “Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria”, BMC Microbiology, 7, 101-109(2007). 3 Talarico, T., Dobrogosz, W., “Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri”, Antimicrob. Agents Chemother., 33(5), 674-679(1989). 4 Vollenweider, S., Grassi, G., Iwo, K., Puhan, Z., “Purification and structural characterization of 3-hydroxypropionaldehyde and its derivatives”, J. Agric. Food Chem., 51(11), 3287-3293(2003). 5 Axelsson, L.T., Chung, T.C., Dobrogosz, W.J., Lindgren, S.E., “Procuction of a broad spectrum antimicrobial substance by Lactobacillus reuteri”, Microb. Ecol. Health Dis., 2(2), 131-136(1989). 6 El-Ziney, M.G., Debevere, J.M., “The effect of reuterin on Listeria monocytogenes and Escherichia coli O157:H7 in milk and cottage cheese”, J. Food Prot., 61(10), 1275-1280(1998). 7 El-Ziney, M.G., vanden Tempel, T., Debevere, J., Jakobsen, M., “Application of reuterin produced by Lactobacillus reuteri 12002 for meat decontamination and preservation”, J. Food Prot., 62(3), 257-261(1999). 8 Ruiz-Moyano, S., Martin, A., Benito, M.J., “Safety and functional aspects of pre-selected lactobacilli for probiotic use in Iberian dry-fermented sausages”, Meat Science, 83(3), 460-467(2009). 9 McQuestin, O.J., Shadbolt, C.T., Ross, T., “Quantification of the relative effects of temperature, pH, and water activity on inactivation of Escherichia coli in fermented meat by meta-analysis”, Appl. Environ. Microbiol., 75(22), 6963-6972(2009). 10 Spinler, J.K., Taweechotipatr, M., Rognerud, C.L., Ou, C.N., Tumwasorn, S., Versalovic, J., “Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens”, Anaerobe, 14(3), 166-171(2008). 11 El-Ziney, M.G., Jakobsen, M., “Efectiveness of reuterin alone and in combination with nisin or other food contact surfaces sanitizers and cleaners for disinfection of stainless steel surfaces contaminated with Escherichia coli and Listeria innocua”, J. Food Agri. & Environ., 7(1), 145-149(2009). 12 Talarico, T.L., Dobrogosz, W.J., “Purification and characterization of glycerol dehydratase from Lactobacillus reuteri”, Appl. Environ. Microbiol., 56(4), 1195-1197(1990). 13 Barbirato, F., Grivet, J.P., Soucaille, P., Bories, A., “3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species”, Appl. Environ. Microbial., 62(4), 1448-1451(1996). 14 Montserrat, T., Angel, F.M., José, A.C., Juan, J.R., “Unstructured kinetic model for reuterin and 1,3-propanediol production by Lactobacillus reuteri from glycerol/glucose cofermentation”, J. Chem. Technol. Biotechnol., 84(5), 675-680(2009). 15 Talarico, T.L., Casas, I.A., Chung, T.C., Dobrogosz, W.J., “Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri”, Antimicrob. Agents Chemother., 32(12), 1854-1858(1988). 16 Lüthi-Peng, Q., Sch rer, S., Puhan, Z., “Production and stability of 3-hydroxypropionaldehyde in Lactobacillus reuteri”, Appl. Microbiol. Biotechnol., 60(1-2), 73-80(2002). 17 Lüthi-Peng, Q., Dileme, F.B.S., Puhan, Z., “Effect of glucose on glycerol bioconversion by Lactobacillus ruteri”, Appl. Microbiol. Biotechnol., 59(2-3), 289-296(2002). 18 Doleyres, Y., Beck, P., Vollenweider, S., Lacroix, C., “Production of 3-hydroxypiopionaldehyde using a two-step process with Lactobacillus reuteri”, Appl. Microbiol. Biotechnol., 68(4), 467-474(2005). 19 Fabien, B., Philippe, S., Carole, C., Andréb, B., “Uncoupled glycerol distribution as the origin of the accumulation of 3-hydroxypropionaldehyde during the fermentation of glycerol by Enterobacter agglomerans CNCM 1210”, Biotechnol. Bioeng., 58(2-3), 303-305(1998). 20 Kajiura, H., Mori, K., Shibata, N., Toraya, T., “Molecular basis for specificities of reactivating factors for adenosylcobalamin-dependent diol and glycerol dehydratases”, FEBS J., 274(21), 5556-5566(2007). 21 Talarico, T.L., Axelsson, L.T., Novotny, J., Fiuzat, M., Dobrogosz, W.J., “Utilization of glycerol as a hydrogen acceptor by Lactobacillus reuteri: purification of 1,3-propanediol: NAD+ oxidoreductase”, Appl. Environ. Microbiol., 56(4), 943-948(1990). |