›› 2016, Vol. 24 ›› Issue (2): 293-309.DOI: 10.1016/j.cjche.2015.12.006
• Fluid Dynamics and Transport Phenomena • Previous Articles Next Articles
Ali Akbar Jamali1, Shahrokh Shahhosseini1, Yaghoub Behjat 2
Received:
2014-10-31
Revised:
2015-10-19
Online:
2016-03-14
Published:
2016-02-28
Ali Akbar Jamali, Shahrokh Shahhosseini, Yaghoub Behjat . Experimental evaluation and modeling of liquid jet penetration to estimate droplet size in a three-phase riser reactor[J]. , 2016, 24(2): 293-309.
Ali Akbar Jamali, Shahrokh Shahhosseini, Yaghoub Behjat . [J]. , 2016, 24(2): 293-309.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2015.12.006
[1] A.H. Lefebvre, Atomization and sprays, Hemisphere Pub. Corp., New York, 1989. [2] C.Mirgain, C. Briens, M.D. Pozo, R. Loutaty, M. Bergougnou, Modeling of feed vaporization in fluid catalytic cracking, Ind. Eng. Chem. Res. 39 (2000) 4392-4399. [3] R.Wang, C. Li, X. He, B. Chen, A novel close-loop strategy for integrating process operations of fluidized catalytic cracking unit with production planning optimization, Chin. J. Chem. Eng. 16 (2008) 909-915. [4] C. Liu, Y. Guo, Mechanisms for particle clustering in upward gas-solid flows, Chin. J. Chem. Eng. 14 (2006) 141-148. [5] S. Wang, H. Lu, J. Gao, C. Xu, D. Sun, Numerical predication of cracking reaction of particle clusters in fluid catalytic cracking riser reactors, Chin. J. Chem. Eng. 16 (2008) 670-678. [6] E.B. Babinsky, P.E. Sojka, Modeling drop size distributions, Prog. Energy Combust. Sci. 28 (2002) 303-329. [7] R.W. Sellens, T.A. Brzustowski, A prediction of the drop size distribution in a spray from first principles, At. Spray Technol. (1985) 89-102. [8] X. Li, R.S. Tankin, Droplet size distribution: A derivation of a Nukiyama-Tanasawa type distribution function, Combust. Sci. Technol. 56 (1987) 65-76. [9] X. Li, L.P. Chin, Comparison between experiments and predictions based on maximum entropy for sprays from a pressure atomizer, Combust. Flame 86 (1991) 73-89. [10] G.W.M. Vander, H. Vermeer, Prediction of drop size distributions in sprays using the maximumentropy formalism: The effect of satellite formation, Int. J. Multiphase Flow 20 (1994) 363-381. [11] V. Semiao, P. Andrade, M.D.G. Carvalho, Spray characterization: Numerical prediction of Sauter mean diameter and droplet size distribution, Fuel 75 (1996) 1707-1714. [12] M.M. El-kotb, Fuel atomization for spray modeling, Prog. Energy Combust. Sci. 8 (1982) 61-91. [13] N. Dombrowski, W.R. Johns, The aerodynamic instability and disintegration of viscous liquid sheets, Chem. Eng. Sci. 18 (1963) 203-214. [14] C. Dumouchel, S. Boyaval, Use of the maximum entropy formalism to determine drop size distribution characteristics, Part. Part. Syst. Charact. 16 (1999) 177-184. [15] G. Aguilar, B. Majaron, W. Verkruysse, Y. Zhou, J.S. Nelson, E.J. Lavernia, Theoretical and experimental analysis of droplet diameter, temperature and evaporation rate evaluation in cryogenic spray, Int. J. Heat Mass Transf. 44 (2001) 3201-3211. [16] H. Sun, B. Bai, J. Yan, H. Zhang, Single-jet spray mixing with a confined cross-flow, Chin. J. Chem. Eng. 21 (2013) 14-24. [17] J. Li, S. Huang, X.Wang, Numerical study of steam-water separators with wave-type vanes, Chin. J. Chem. Eng. 15 (2007) 492-498. [18] Y.R. Sivathanu, J.P. Gore, A discrete probability function method for the equation of radiative transfer, J. Quant. Spectrosc. Radiat. Transf. 49 (1993) 269-280. [19] S.D. Sovani, P.E. Sojka, Y.R. Sivathanu, Prediction of drop size distributions from first principles: Joint PDF effects, Atomization Sprays 10 (2000) 587-602. [20] S.D. Sovani, P.E. Sojka, Y.R. Sivathanu, Prediction of drop size distributions from first principles: The influence of fluctuations in relative velocity and liquid physical properties, Atomization Sprays 9 (1999) 133-152. [21] T. Li, K. Pougatch, M. Salcudean, D. Grecov, Numerical modeling of an evaporative spray in a riser, Powder Technol. 201 (2010) 213-229. [22] V.A. Iyer, J. Abraham, V.Magi, Exploring injected droplet size effects on steady liquid penetration in a Diesel spray with a two-fluid model, Int. J. Heat Mass Transf. 45 (2002) 519-531. [23] J.A. Bassard, R.E. Peck, Droplet size distribution effects in spray combustion, Presented at the 26th Int. Symp. Combust. Inst. Napoli 1996, pp. 1671-1677. [24] J. Hayashi, J. Fukui, F. Akamatsu, Effects of fuel drop size distribution on soot formation in spray flames formed in laminar counter flow, Proc. Combust. Inst. (2013) 1562-1569. [25] J. Hayashi, H. Watanabe, R. Kurose, F. Akamatsu, Effects of fuel droplet size on soot formation in spray flames formed in a laminar counter-flow, Combust. Flame 148 (2011) 2560-2569. [26] P. Deepu, S. Basu, R. Kumar, Vaporization dynamics of functional droplets in a hot laminar air jet, Int. J. Heat Mass Transf. 56 (2013) 69-79. [27] K. Yokota, S.Matsuoka, An experimental study of fuel spray in a diesel engine, Trans. Jpn. Soc. Mech. Eng. 43 (1973) 3455-3464. [28] H. Hiroyasu,M. Arai, Fuel spray penetration and spray angle in diesel engines, Trans. Jpn. Soc. Mech. Eng. 21 (1980) 5-11. [29] T.R. Ohrn, D.W. Senser, A.H. Lefebvre, Geometrical effects on spray cone angle for plain-orifice atomizers, At. Sprays 1 (1991) 137-154. [30] A.H. Lefebvre, D.R. Ballal, Gas turbine combustion, Taylor & Francis Group, 2010. [31] D.S.J. Jones, P.P. Pujadó, Handbook of petroleum processing, Springer, Dordrecht, 2006. [32] I.S. Han, C.B. Chung, J.B. Riggs, Modeling of a fluidized catalytic cracking process, Comput. Chem. Eng. 24 (2000) 1682-1687. [33] N. Ashgriz, Handbook of atomization and sprays: Theory and applications, Springer, Dordrecht Heidelberg London, New York, 2011. [34] S. Kim, C.S. Lee, D.J. Lee, Modeling of binary droplet collisions for application to interimpingement sprays, Int. J. Multiphase Flow 35 (2009) 533-549. [35] P.J. O'Rourke, Collective drop effects on vaporizing liquid sprays(Ph.D. thesis) Mech. Aero. Eng., Princeton University, USA, 1981. [36] Y. Behjat, S. Shahhosseini, M.M. Ahmadi, Modeling gas oil spray coalescence and vaporization in gas solid riser reactor, Int. Commun. Heat Mass Transfer 37 (2010) 935-943. [37] V. Mathiesen, T. Solberg, B.H. Hjertager, An experimental and computational study of multiphase flow behavior in a circulating fluidized bed, Int. J. Multiphase Flow 26 (2000) 387-418. [38] S. Bhowmick, N.A. Baveja, C.P. Shringi, K.T. Shenoy, S.K. Ghosh, Pressure fluctuations in a liquid-sprayed gas fluidized bed, Chemical Engineering Division, Ind. Eng. Chem. Res. 53 (2014) 12631-12638. [39] A.H. Lefebvre, Fuel injection, Gas turbine combustion, McGraw-Hill Book Co., 1983 (10th chapter). [40] K. Sridhara, Gas making in the dilution zone of a combustions chamber, Technical Report (TN-30)., National Aeronautical Laboratory, Bangalore, India, 1970. [41] J.S. Buchanan, Analysis of heating and vaporization of feed droplets in fluidized catalytic cracking risers, Ind. Eng. Chem. Res. 33 (1994) 3104-3111. [42] H. Ali, S. Rohani, Dynamic modeling and simulation of a riser-type fluid catalytic cracking unit, Chem. Eng. Technol. 20 (1997) 118-130. [43] W.E. Ranz, W.R. Marshall, Evaporation from drops-Part I, Chem. Eng. Prog. 48 (1952) 141-146. [44] W.E. Ranz, W.R. Marshall, Evaporation from drops-Part II, Chem. Eng. Prog. 48 (1952) 173-180. [45] CFX_Mgn., CFX-5 solver and solver manager, 1999 5. [46] D.J. Gunn, Transfer of heat ormass to particles in fixed and fluidized beds, Int. J. Heat Mass Transf. 21 (1978) 467-476. [47] Principal of combustion, John Wiley & Sons, Inc., Hoboken, New Jersey, 2005. [48] C. Li, J. Li, Laminar forced convection heat and mass transfer of humid air across a vertical plate with condensation, Chin. J. Chem. Eng. 19 (2011) 944-954. [49] P. Eisenklam, S.A. Arunachlaman, J.A. Weston, Evaporation rates and drag resistances of burning drops, 11th Int. Symp. on Combustion, Pittsburgh 1967, pp. 715-728. [50] J. Garside, M.R. Al-Dibouni, Velocity-voidage relationships for fluidization and sedimentation, Ind. Eng. Chem. Process Des. Dev. 16 (1977) 206-214. [51] Fluent, Modeling multiphase flows, FLUENT 6.3 user's guide., Fluent Inc., Lebanon, 2003. [52] A. Saboni, S. Alexandrova, Numerical study of the drag on a fluid sphere, AIChE J. 48 (2002) 2992-2994. [53] M. Syamlal, T.J. O'Brien, Computer simulation of bubbles in a fluidized bed, AIChE Symp. Ser. 85 (1989) 22-31. [54] A.L. Yarin, Drop impact dynamics, splashing, spreading, receding, bouncing, Annu. Rev. Fluid Mech. 38 (2006) 159-192. [55] V.K. Pareek, A.A. Adesina, A. Srivastava, R. Sharma, Modeling of a non-isothermal FCC riser, Chem. Eng. J. 92 (2003) 101-109. [56] S.V. Nayak, S.L. Joshi, V.V. Ranade,Modeling of vaporization and cracking of liquid oil injected in a gas-solid riser, Chem. Eng. Sci. 60 (2005) 6050-6067. [57] R.S. Miller, K. Harstad, J. Bellan, Evaluation of equilibriumand non-equilibrium evaporation models for many droplet gas liquid flow simulation, Int. J. Multiphase Flow 24 (1998) 1025-1055. [58] S.R. Turns, An introduction to combustion: Concepts and applications, McGraw-Hill, 2000. [59] J. Li, A.H. Lefebvre, J.R. Rollbuhler, Effervescent atomizers for small gas turbines, Am. Soc. Mech. Eng. 94 (1994) 1-6. [60] M.S. El-Shanawany, A.H. Lefebvre, Airblast atomization: The effect of linear scale on mean drop size, J. Energy (1980) 184-189. [61] G.L. Borman, K.W. Ragland, Combustion engineering, McGraw-Hill, 1998. [62] G.E. Lorenzetto, A.H. Lefebvre, Measurements of drop size on a plain-jet airblast atomizer, AIAA J. 15 (1977) 1006-1010. [63] A.K. Jasuja, Atomization of crude and residual fuel oils, J. Eng. Gas Turbines Power 101 (1979) 250-258. [64] M.M. El-kotb, Fuel atomization for spray modeling, Prog. Energy Combust. Sci. 8 (1982) 61-91. [65] V.G. Levich, Physicochemical hydrodynamics, 2nd ed. Prentice-Hall, Englewood Cliffs, NJ, 1962 639-650. [66] DuPont, Thermodynamic properties of DuPont™ Freon®22 (R-22) refrigerant, The miracles of science™ 20112011. [67] S.D. Heister, Plain orifice spray nozzles, Handbook of atomization and sprays., Springer, 2011 625-645. [68] M.R. Spiegel, Mathematical handbook of formulas and tables, Schaum's outline series., McGraw-Hill Inc., New York, 1968. [69] X. Wang, Z. Chao, A. Rajesh, Numerical simulation of evaporating spray jets in concurrent gas-solids pipe flows, Powder Technol. 140 (1) (2004) 56-67. [70] J. Jaccard, R. Turrisi, C.K. Wan, Interaction effects in multiple regression-Quantitative applications in the social sciences, Sage Pub. Inc., Int. Prof. Pub., New Delhi, 1990. [71] J.G. Orme, T.C. Orme, Multiple regression with discrete dependent variables, Oxf. Univ. Press Inc., New York, 2009. [72] H. Yanagii, Multivariate analysis handbook, Gendai Sugakusha, Tokyo, 1986. |
[1] | Tian Zhang, Qingshan Huang, Shujun Geng, Aqiang Chen, Yan Liu, Haidong Zhang. Impacts of solid physical properties on the performances of a slurry external airlift loop reactor integrating mixing and separation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 1-12. |
[2] | Shenglin Yan, Yan Zhang, Chong Peng, Xiaoyong Yang, Yuan Huang, Zhishan Bai, Xiao Xu. Oil droplet movement and micro-flow characteristics during interaction process between gas bubble and oil droplet in flotation [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 229-237. |
[3] | Wen-Cong Chen, Ya-Wei Fan, Liang-Liang Zhang, Bao-Chang Sun, Yong Luo, Hai-Kui Zou, Guang-Wen Chu, Jian-Feng Chen. Computational fluid dynamic simulation of gas-liquid flow in rotating packed bed: A review [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 85-108. |
[4] | Le Li, Yansheng Zhao, Wenhao Lian, Chun Han, Qian Zhang, Wei Huang. Review on the effect of heat exchanger tubes on flow behavior and heat/mass transfer of the bubble/slurry reactors [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 44-61. |
[5] | Yangjun Wei, Leming Cheng, Erdong Wu, Liyao Li. Experimental research on steady-state operation characteristics of gas-solid flow in a 15.5 m dual circulating fluidized bed system [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 70-76. |
[6] | Shuo Yang, Jilong Zhang, Jiaxing Xue, Qingpeng Wu, Qunsheng Li, Hongkang Zhao, Liqun Zhang. Hydrodynamics and mass transfer performance analysis of flow-guided trapezoid spray packing tray [J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 59-67. |
[7] | Hongyan Liu, Zhuo Li, Shujun Geng, Fei Gao, Taobo He, Qingshan Huang. Influences of top clearance and liquid throughput on the performances of an external loop airlift slurry reactor integrated mixing and separation [J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1514-1521. |
[8] | Chenghui Zheng, Jiashun Guo, Chengkai Wang, Yuanfeng Chen, Huidong Zheng, Zuoyi Yan, Qinggen Chen. Experimental study and simulation of a three-phase flow stirred bioreactor [J]. Chinese Journal of Chemical Engineering, 2019, 27(3): 649-659. |
[9] | Kang Yu, Weijie Wang, Tao Zhang, Yumei Yong, Chao Yang. Effects of internals on phase holdup and backmixing in a slightlyexpanded-bed reactor with gas-liquid concurrent upflow [J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2273-2283. |
[10] | Yongzheng Li, Xiaolai Zhang, Guangwei Zhai, Haitao Zhang, Tao Li, Qiwen Sun, Weiyong Ying. LDV measurements of particle velocity distribution in an annular stripper [J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2293-2303. |
[11] | Dan Li, Kai Guo, Jingnan Li, Yiping Huang, Junchao Zhou, Hui Liu, Chunjiang Liu. Hydrodynamics and bubble behaviour in a three-phase two-stage internal loop airlift reactor [J]. Chin.J.Chem.Eng., 2018, 26(6): 1359-1369. |
[12] | Zhineng Wang, Yong Kang, Xiaochuan Wang, Shijing Wu, Xiaoyong Li. Investigation of the hydrodynamics of slug flow in airlift pumps [J]. Chin.J.Chem.Eng., 2018, 26(12): 2391-2402. |
[13] | Hongkang Zhao, Lun Li, Baohua Wang, Dan Yu, Qunsheng Li. Hydrodynamics performance and tray efficiency analysis of the novel vertical spray packing tray [J]. Chin.J.Chem.Eng., 2018, 26(12): 2448-2454. |
[14] | Peining Yu, Yi Li, Jing Wei, Ying Xu, Tao Zhang. Modeling the pressure drop of wet gas in horizontal pipe [J]. , 2017, 25(7): 829-837. |
[15] | Xiaoqiang Jia, Lin Qi, Yaguang Zhang, Xue Yang, Hongna Wang, Fanglong Zhao, Wenyu Lu. Computational fluid dynamics simulation of a novel bioreactor for sophorolipid production [J]. , 2017, 25(6): 732-740. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||