Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (2): 343-355.DOI: 10.1016/j.cjche.2017.07.001
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Javad Aminian Dehkordi1, Arezou Jafari1, Seyyed Amir Sabet1, Fatemeh Karami2
Received:
2017-01-01
Revised:
2017-07-04
Online:
2018-03-16
Published:
2018-02-28
Contact:
Arezou Jafari
Supported by:
Supported by the Iranian National Science Foundation (INSF) under grant number 91042428.
Javad Aminian Dehkordi1, Arezou Jafari1, Seyyed Amir Sabet1, Fatemeh Karami2
通讯作者:
Arezou Jafari
基金资助:
Supported by the Iranian National Science Foundation (INSF) under grant number 91042428.
Javad Aminian Dehkordi, Arezou Jafari, Seyyed Amir Sabet, Fatemeh Karami. Kinetic studies on extra heavy crude oil upgrading using nanocatalysts by applying CFD techniques[J]. Chin.J.Chem.Eng., 2018, 26(2): 343-355.
Javad Aminian Dehkordi, Arezou Jafari, Seyyed Amir Sabet, Fatemeh Karami. Kinetic studies on extra heavy crude oil upgrading using nanocatalysts by applying CFD techniques[J]. Chinese Journal of Chemical Engineering, 2018, 26(2): 343-355.
[1] Oil Market Report, International Energy Agency, 2010. [2] H. Alboudwarej, J. Felix, S. Taylor, R. Badry, C. Bremner, B. Brough, C. Skeates, A. Baker, D. Palmer, K. Pattison, Highlighting heavy oil, Oilfield Rev. 18(2) (2006) 34-53. [3] S. Sadrameli, Thermal/catalytic cracking of hydrocarbons for the production of olefins:A state-of-the-art review I:Thermal cracking review, Fuel 140(2015) 102-115. [4] R. Ren, H. Liu, Y. Chen, J. Li, Y. Chen, Improving the Aquathermolysis Efficiency of Aromatics in Extra-Heavy Oil by Introducing Hydrogen-Donating Ligands to Catalysts, Energy Fuel 29(12) (2015) 7793-7799. [5] X. Meng, C. Xu, J. Gao, L. Li, Studies on catalytic pyrolysis of heavy oils:Reaction behaviors and mechanistic pathways, Appl. Catal. A Gen. 294(2) (2005) 168-176. [6] J.-H. Lin, V.V. Guliants, Alumina-supported Cu-Ni and Ni-Cu core-shell nanoparticles:Synthesis, characterization, and catalytic activity in water-gas-shift reaction, Appl. Catal. A Gen. 445(2012) 187-194. [7] K. Li, B. Hou, L. Wang, Y. Cui, Application of carbon nanocatalysts in upgrading heavy crude oil assisted with microwave heating, Nano Lett. 14(6) (2014) 3002-3008. [8] E.E. Johnsen, H.P. Ronningsen, Viscosity of ‘live’ water-in-crude-oil emulsions:experimental work and validation of correlations, J. Pet. Sci. Eng. 38(1) (2003) 23-36. [9] J. Sjöblom, N. Aske, I.H. Auflem, O. Brandal, T.E. Havre, O. Saether, A. Westvik, E.E. Johnsen, H. Kallevik, Our current understanding of water-in-crude oil emulsions.:Recent characterization techniques and high pressure performance, Adv. Colloid Interf. Sci. 100(2003) 399-473. [10] P.M. Rahimi, T. Gentzis, The chemistry of bitumen and heavy oil processing, Practical Advances in Petroleum Processing, Springer 2006, pp. 597-634. [11] S.V. Nayak, S.L. Joshi, V.V. Ranade, Modeling of vaporization and cracking of liquid oil injected in a gas-solid riser, Chem. Eng. Sci. 60(22) (2005) 6049-6066. [12] J. Chang, F. Meng, L. Wang, K. Zhang, H. Chen, Y. Yang, CFD investigation of hydrodynamics, heat transfer and cracking reaction in a heavy oil riser with bottom airlift loop mixer, Chem. Eng. Sci. 78(2012) 128-143. [13] Y. Behjat, S. Shahhosseini, M.A. Marvast, CFD analysis of hydrodynamic, heat transfer and reaction of three phase riser reactor, Chem. Eng. Res. Des. 89(7) (2011) 978-989. [14] S.A. Sabet, Effects of microwaves radiation and nanocatalysts ion viscosity reduction of extra heavy crude oil, Department of chemical engineering, Tarbiat Modares University, 2015. [15] Y.H. Shokrlu, T. Babadagli, Viscosity reduction of heavy oil/bitumen using micro-and nano-metal particles during aqueous and non-aqueous thermal applications, J. Pet. Sci. Eng. 119(2014) 210-220. [16] B. Gong, Methodology for technology evaluation under uncertainty and its application in advanced coal gasification processes, Massachusetts Institute of Technology, 2011. [17] H.C. Frey, E.S. Rubin, Evaluation of advanced coal gasification combined-cycle systems under uncertainty, Ind. Eng. Chem. Res. 31(5) (1992) 1299-1307. [18] I. Pan, D.S. Pandey, Incorporating uncertainty in data driven regression models of fluidized bed gasification:A Bayesian approach, Fuel Process. Technol. 142(2016) 305-314. [19] A. Kraslawski, Review of applications of various types of uncertainty in chemical engineering, Chem. Eng. Process. Process Intensif. 26(3) (1989) 185-191. [20] J.P. Holman, W.J. Gajda, Experimental methods for engineers, 7, McGraw-Hill, New York, 2001. [21] R. Gharibshahi, A. Jafari, A. Haghtalab, M.S. Karambeigi, Application of CFD to evaluate the pore morphology effect on nanofluid flooding for enhanced oil recovery, RSC Adv. 5(37) (2015) 28938-28949. [22] A. Jafari, T. Tynjala, S.M. Mousavi, P. Sarkomaa, CFD simulation and evaluation of controllable parameters effect on thermomagnetic convection in ferrofluids using Taguchi technique, Comput. Fluids 37(10) (2008) 1344-1353. [23] A. Shahmohammadi, A. Jafari, Application of different CFD multiphase models to investigate effects of baffles and nanoparticles on heat transfer enhancement, Front. Chem. Sci. Eng. 8(3) (2014) 320-329. [24] A. Jafari, P. Zamankhan, S.M. Mousavi, K. Pietarinen, Modeling and CFD simulation of flow behavior and dispersivity through randomly packed bed reactors, Chem. Eng. J. 144(3) (2008) 476-482. [25] J. Buongiorno, Convective transport in nanofluids, J. Heat Transf. 128(3) (2006) 240-250. [26] M.Z. Saghir, A. Ahadi, T. Yousefi, B. Farahbakhsh, Two-phase and single phase models of flow of nanofluid in a square cavity:Comparison with experimental results, Int. J. Therm. Sci. 100(2016) 372-380. [27] A. Ochieng, M.S. Onyango, Drag models, solids concentration and velocity distribution in a stirred tank, Powder Technol. 181(1) (2008) 1-8. [28] H. Azargoshasb, S.M. Mousavi, T. Amani, A. Jafari, M. Nosrati, Three-phase CFD simulation coupled with population balance equations of anaerobic syntrophic acidogenesis and methanogenesis reactions in a continuous stirred bioreactor, J. Ind. Eng. Chem. 27(2015) 207-217. [29] D.C. Wilcox, Turbulence modeling for CFD, 2, DCW industries La Canada, CA, 1998. [30] A. Brandenburg, P.J. Kapyla, A. Mohammed, Non-Fickian diffusion and tau approximation from numerical turbulence, Phys. Fluids (1994-present) 16(4) (2004) 1020-1027. [31] L. Rebreanu, J.-P. Vanderborght, L. Chou, The diffusion coefficient of dissolved silica revisited, Mar. Chem. 112(3) (2008) 230-233. [32] I.M. Head, D.M. Jones, S.R. Larter, Biological activity in the deep subsurface and the origin of heavy oil, Nature 426(6964) (2003) 344-352. [33] N. Rahimi, R. Karimzadeh, Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins:A review, Appl. Catal. A Gen. 398(1) (2011) 1-17. [34] R. Sahu, B.J. Song, J.S. Im, Y.-P. Jeon, C.W. Lee, A review of recent advances in catalytic hydrocracking of heavy residues, J. Ind. Eng. Chem. 27(2015) 12-24. [35] T. Ahmed, Reservoir Engineering Handbook, 3, Gulf Professional Publishing, 2006. [36] O. Alomair, A. Elsharkawy, H. Alkandari, A viscosity prediction model for Kuwaiti heavy crude oils at elevated temperatures, J. Pet. Sci. Eng. 120(2014) 102-110. [37] A.P. Szilas, Production and Transport of Oil and Gas:Gathering and transportation, Elsevier, 1985. [38] G. Petrosky Jr., F. Farshad, Viscosity correlations for Gulf of Mexico crude oils, SPE Production Operations Symposium, Society of Petroleum Engineers, 1995. [39] R.E. Maples, Petroleum refinery process economics, Pennwell books, 2000. [40] L.S. Lee, Y.W. Chen, T.N. Huang, W.Y. Pan, Four-lump kinetic model for fluid catalytic cracking process, Can. J. Chem. Eng. 67(4) (1989) 615-619. [41] Y. Hamedi Shokrlu, T. Babadagli, In-situ upgrading of heavy oil/bitumen during steam injection by use of metal nanoparticles:A study on in-situ catalysis and catalyst transportation, SPE Reserv. Eval. Eng. 16(03) (2013) 333-344. [42] J.V. Mehrabani, M. Noaparast, S.M. Mousavi, R. Dehghan, A. Ghorbani, Process optimization and modelling of sphalerite flotation from a low-grade Zn-Pb ore using response surface methodology, Sep. Purif. Technol. 72(3) (2010) 242-249. [43] S.L.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, G.C. Brandao, E.G.P. da Silva, L.A. Portugal, P.S. dos Reis, A.S. Souza, W.N.L. dos Santos, Box-Behnken design:An alternative for the optimization of analytical methods, Anal. Chim. Acta 597(2) (2007) 179-186. [44] A. Maghzi, S. Mohammadi, M.H. Ghazanfari, R. Kharrat, M. Masihi, Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in fivespot systems:A pore-level investigation, Exp. Thermal Fluid Sci. 40(2012) 168-176. [45] M. Dogru, A. Midilli, C.R. Howarth, Gasification of sewage sludge using a throated downdraft gasifier and uncertainty analysis, Fuel Process. Technol. 75(1) (2002) 55-82. [46] V.Y. Rudyak, S.L. Krasnolutskii, Dependence of the viscosity of nanofluids on nanoparticle size and material, Phys. Lett. A 378(26-27) (2014) 1845-1849. [47] J. Aminian Dehkordi, S.S. Hosseini, P.K. Kundu, N.R. Tan, Mathematical modeling of natural gas separation using hollow fiber membrane modules by application of finite element method through statistical analysis, Chem. Prod. Process. Model. 11(1) (2016) 11-15. [48] S.S. Hosseini, J. Aminian Dehkordi, P.K. Kundu, Gas permeation and separation in asymmetric hollow fiber membrane permeators:Mathematical modeling, sensitivity analysis and optimization, Korean J. Chem. Eng. 33(11) (2016) 3085-3101. [49] S.O. Rastegar, S.M. Mousavi, S.A. Shojaosadati, Bioleaching of an oil-fired residual:process optimization and nanostructure NaV 6 O 15 synthesis from the bioleachate, RSC Adv. 5(51) (2015) 41088-41097. [50] S. Rastegar, S. Mousavi, M. Rezaei, S. Shojaosadati, Statistical evaluation and optimization of effective parameters in bioleaching of metals from molybdenite concentrate using Acidianus brierleyi, J. Ind. Eng. Chem. 20(5) (2014) 3096-3101. [51] M. Ijadi Bajestani, S.M. Mousavi, S.A. Shojaosadati, Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans:Statistical evaluation and optimization, Sep. Purif. Technol. 132(2014) 309-316. [52] R. Mafi Gholami, S.M. Mousavi, S.M. Borghei, Process optimization and modeling of heavy metals extraction from a molybdenum rich spent catalyst by aspergillus niger using response surface methodology, J. Ind. Eng. Chem. 18(1) (2012) 218-224. [53] S.M. Mousavi, S. Yaghmaei, A. Jafari, M. Vossoughi, Z. Ghobadi, Optimization of ferrous biooxidation rate in a packed bed bioreactor using Taguchi approach, Chem. Eng. Process. Process Intensif. 46(10) (2007) 935-940. |
[1] | Jiahao Xing, Huaizhi Han, Ruitian Yu, Wen Luo. Numerical simulation of flow and heat transfer of n-decane in sub-millimeter spiral tube at supercritical pressure [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 173-185. |
[2] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[3] | Lijuan Zhao, Zhe Tan, Xiaoguang Zhang, Qijun Zhang, Wei Wang, Qiang Deng, Jie Ma, De'an Pan. Research on process modeling and simulation of spent lead paste desulfurization enhanced reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 293-303. |
[4] | Jian Han, Xinhua Liu, Shanwei Hu, Nan Zhang, Jingjing Wang, Bin Liang. Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 182-192. |
[5] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[6] | Huan-Huan Yin, Yin-Lei Han, Xiao Yan, Yi-Xin Guan. Proanthocyanidins prevent tau protein aggregation and disintegrate tau filaments [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 63-71. |
[7] | Jixiang Liu, Xin Zhou, Gengfei Yang, Hui Zhao, Zhibo Zhang, Xiang Feng, Hao Yan, Yibin Liu, Xiaobo Chen, Chaohe Yang. Conceptual carbon-reduction process design and quantitative sustainable assessment for concentrating high purity ethylene from wasted refinery gas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 290-308. |
[8] | Shengfeng Luo, Song Zhang, Yiping Zeng, Hui Zhang, Lili Zheng, Zhaopeng Xu. Study on oxygen transport and titanium oxidation in coating cracks under parallel gas flow based on LBM modelling [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 15-24. |
[9] | Jikai Dong, Bing Wang, Xinjie Wang, Chenxi Cao, Shikuan Chen, Wenli Du. Optimization of sensor deployment sequences for hazardous gas leakage monitoring and source term estimation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 169-179. |
[10] | Shuangfei Zhao, Yingying Nie, Wenyan Zhang, Runze Hu, Lianzhu Sheng, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 255-265. |
[11] | Qiaoqiao Liu, Guihong Lin, Jian Zhou, Liangliang Huang, Chang Liu. Hydrogen-bond mediated and concentrate-dependent NaHCO3 crystal morphology in NaHCO3–Na2CO3 aqueous solution: Experiments and computer simulations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 49-58. |
[12] | Fufeng Liu, Luying Jiang, Jingcheng Sang, Fuping Lu, Li Li. Molecular basis of cross-interactions between Aβ and Tau protofibrils probed by molecular simulations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 173-180. |
[13] | Pan Huang, Zekai Zhang, Yuxin Chen, Changwei Liu, Yong Zhang, Cheng Lian, Yajun Ding, Honglai Liu. Multi-scale simulation of diffusion behavior of deterrent in propellant [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 29-35. |
[14] | Jialei Sha, Chenyi Liu, Zhihong Ma, Weizhong Zheng, Weizhen Sun, Ling Zhao. Understanding the interfacial behaviors of benzene alkylation with butene using chloroaluminate ionic liquid catalyst: A molecular dynamics simulation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 44-52. |
[15] | Baodong Zhao, Yinglei Wang, Fulei Gao, Yajing Liu, Weixiao Liu, Feng Ding. Understanding the alkyl effect of geminal dinitropropyl ester energetic plasticizers on hydroxyl terminated polybutadiene (HTPB): Simultaneous tuning on low temperature behavior and processability [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 364-371. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 97
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1426
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||