[1] W.H. Gui, C.H. Yang, D.G. Xu, et al., Machine-vision-based online measuring and controlling technologies for mineral flotation:A review, Acta Automat. Sin. 39(11) (2013) 1879-1888.[2] J.P. Liu, Z.H. Tang, J. Zhang, Q. Chen, P.F. Xu, W.Z. Liu, Visual perception based statistical modeling of complex grain image for product quality monitoring and supervision on assembly production line, PLoS One 11(3) (2016), e0146484..[3] J.P. Liu, Z.H. Tang, P.F. Xu, W.Z. Liu, J. Zhang, J.Y. Zhu, Quality-related monitoring and grading of granulated products by Weibull-distribution modeling of visual images with semi-supervised learning, Sensors 16(12) (2016) 998.[4] Z.H. Tang, M.L. Liu, J.P. Liu, et al., Performance recognition of antimony flotation based on froth image features and matter-element extension model, Control and Decision 30(8) (2015) 1485-1490.[5] J. Zhang, Z.H. Tang, J.P. Liu, Recognition of flotation working conditions through froth image statistical modeling for performance monitoring, Miner. Eng. 86(2016) 116-129.[6] X. Peng, T. Peng, L. Zhao, Y.P. Song, W.H. Gui, Working condition recognition based on an improved NGLDM and interval data-based classifier for the antimony roughing process, Miner. Eng. 86(2016) 1-9.[7] Y.G. Xu, Z.P. Meng, G.L. Zhao, Study on compound fault diagnosis of rolling bearing based on dual-tree complex wavelet transform, Chin. J. Sci. Instrum. 35(2) (2014) 447-452.[8] K. Selvakumar, Jovitha Jerome, Kumar Rajamani, Robust face identification using DTCWT and PCA subspace based sparse representation, Multimedia Tools Appl. 75(2016) 16073-16092.[9] I.W. Selesnick, R.G. Baraniuk, N.G. Kingsbury, The dual-tree complex wavelet transform, IEEE Signal Process. Mag. 22(6) (2005) 123-151.[10] N. Kingsbury, The dual-tree complex wavelet transform:A new technique for shiftinvariance and directional filters, Proceeding of the IEEE Digital Signal Processing Workshop; Bryce Canyon, UT, USA August 9-12, 1998, pp. 120-131.[11] S. Ioannidou, V. Karathanassi, Investigation of the dual-tree complex and shift-invariant discrete wavelet transforms on Quickbird image fusion, IEEE Geosci. Remote Sens. Lett. 4(2007) 166-170.[12] Leo Breiman, Random forests, Mach. Learn. J. 45(1) (2001) 5-32.[13] I.H. Witten, E. Frank, M.A. Hall, Data Mining:Practical Machine Learning Tools and Techniques, 3rd ed. Morgan Kaufman, Boston, 2011.[14] A.M. Molinaro, R. Simon, R.M. Pfeiffer, Prediction error estimation:a comparison of resampling methods, Bioinformatics 21(2005) 3301-3307.[15] G.B. Huang, H.M. Zhou, X.J. Ding, et al., Extreme learning machines for regression and multiclass classification, IEEE Trans. Syst. Man Cybern. B Cybern. 42(3) (2011) 513-529. |