Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (10): 2304-2312.DOI: 10.1016/j.cjche.2019.03.009
• Fluid Dynamics and Transport Phenomena • Previous Articles Next Articles
Andrej Bombač, Jernej Pirnar
Received:
2018-09-20
Revised:
2019-01-24
Online:
2020-01-17
Published:
2019-10-28
Contact:
Andrej Bombač
Andrej Bombač, Jernej Pirnar
通讯作者:
Andrej Bombač
Andrej Bombač, Jernej Pirnar. Numerical and experimental analyses of a stirred vessel for a large volumetric flow rate of sparged air[J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2304-2312.
Andrej Bombač, Jernej Pirnar. Numerical and experimental analyses of a stirred vessel for a large volumetric flow rate of sparged air[J]. 中国化学工程学报, 2019, 27(10): 2304-2312.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2019.03.009
[1] K. Kraume, P. Z. Zehner, Experience with experimental standards for measurements of various parameters in stirred tanks, Trans. IChemE. 79(2001) 811-818. [2] E.L. Paul, V.A. Atiemo-Obeng, S.M. Kresta (Eds.), Handbook of Industrial Mixing:Science and Practice, John Wiley & Sons, Inc., 2004 [3] G. Ascanio, B. Castro, E. Galindo, Measurement of Power Consumption in Stirred, vol. 82, 20041282-1290. [4] G. Ascanio, Mixing time in stirred vessels:A review of experimental techniques, Chin. J. Chem. Eng. 23(2015) 1065-1076. [5] A. Bombač, D. Beader, I. Žun, Mixing times in a stirred vessel with a modified turbine, Acta Chim. Slov. 59(2012) 707-721. [6] A.W. Nienow, On impeller circulation and mixing effectiveness in the turbulent flow regime, Chem. Eng. Sci. 52(1997) 2557-2565. [7] T.L. Rodgers, L. Gangolf, C. Vannier, M. Parriaud, M. Cooke, Mixing times for process vessels with aspect ratios greater than one, Chem. Eng. Sci. 66(2011) 2935-2944. [8] A. Bombač, I. Žun, B. Filipič, M. Žumer, B. Filipic, M. Žumer, Gas-filled cavity structures and local void fraction distribution in aerated stirred vessel, AICHE J. 43(1997) 2921-2931. [9] W. Wang, Z.S. Mao, C. Yang, Experimental and numerical investigation on gas holdup and flooding in an aerated stirred tank with Rushton impeller, Ind. Eng. Chem. Res. 45(2006) 1141-1151. [10] A. Bombac, I. Zun, Flooding-recognition methods in a turbine-stirred vessel, Stroj. Vestn.-J. Mech. Eng. 48(2002) 663-676. [11] A. Bombač, Disc Mixer with Asymmetrical Bended Blades, Patent in Force 24012(A), 2013-09-30, 2013. [12] A. Bombač, Asymmetric Blade Disc Turbine for High Aeration Rate in a Fermenter, Stroj. Vestn.-J. Mech. Eng. 64(2018) 513-524. [13] M. Cooke, P.J. Heggs, Advantages of the hollow (concave) turbine for multi-phase agitation under intense operating conditions, Chem. Eng. Sci. 60(2005) 5529-5543. [14] A.W. Nienow, W. Bujalski, The versatility of up-pumping hydrofoil agitators, Chem. Eng. Res. Des. 82(2004) 1073-1081. [15] J.M.T. Vasconcelos, S.C.P. Orvalho, A.M.A.F. Rodrigues, S.S. Alves, Effect of blade shape on the performance of six-bladed disk turbine impellers, Ind. Eng. Chem. Res. 39(2000) 203-213. [16] S.S. Alves, C.I. Maia, J.M.T. Vasconcelos, A.J. Serralheiro, Bubble size in aerated stirred tanks, Chem. Eng. J. 89(2002) 109-117. [17] A. Bombač, I. Žun, Individual impeller flooding in aerated vessel stirred by multipleRushton impellers, Chem. Eng. J. 116(2006) 85-95. [18] F. Magelli, G. Montante, D. Pinelli, A. Paglianti, Mixing time in high aspect ratio vessels stirred with multiple impellers, Chem. Eng. Sci. 101(2013) 712-720. [19] P. Vrábel, R.G.J.M. Van Der Lans, K.C.A.M. Luyben, L. Boon, A.W. Nienow, Mixing in large-scale vessels stirred with multiple radial or radial and axial up-pumping impellers:Modelling and measurements, Chem. Eng. Sci. 55(2000) 5881-5896. [20] M. hui Xie, J. ye Xia, Z. Zhou, G. zhong Zhou, J. Chu, Y. ping Zhuang, S. liang Zhang, H. Noorman, Power consumption, local and average volumetric mass transfer coefficient in multiple-impeller stirred bioreactors for xanthan gum solutions, Chem. Eng. Sci. 106(2014) 144-156. [21] L. Zhang, Q. Pan, G.L. Rempel, Liquid phase mixing and gas hold-up in a multistageagitated contactor with co-current upflow of air/viscous fluids, Chem. Eng. Sci. 61(2006) 6189-6198. [22] P.M. Armenante, G.-M. Chang, Power consumption in agitated vessels provided with multiple-disk turbines, Ind. Eng. Chem. Res. 37(1998) 284-291. [23] P.M. Armenante, B. Mazzarotta, G.M. Chang, Power consumption in stirred tanks provided with multiple pitched-blade turbines, Ind. Eng. Chem. Res. 38(1999) 2809-2816. [24] M.O. Albaek, K.V. Gernaey, S.M. Stocks, Gassed and ungassed power draw in a pilot scale 550 litre fermentor retrofitted with up-pumping hydrofoil B2 impellers in media of different viscosity and with very high power draw, Chem. Eng. Sci. 63(2008) 5813-5820. [25] M. Bouaifi, M. Roustan, Power consumption, mixing time and homogenisation energy in dual-impeller agitated gas-liquid reactors, Chem. Eng. Process. 40(2001) 87-95. [26] H.V. Hristov, R. Mann, V. Lossev, S.D. Vlaev, A simplified CFD for three-dimensional analysis of fluid mixing, mass transfer and bioreaction in a fermenter equipped with triple novel geometry impellers, Food Bioprod. Process. 82(2004) 21-34. [27] D. Pinelli, F. Magelli, Analysis of the fluid dynamic behavior of the liquid and gas phases in reactors stirred with multiple hydrofoil impellers, Ind. Eng. Chem. Res. 39(2000) 3202-3211. [28] J. Aubin, C. Xuereb, Design of multiple impeller stirred tanks for the mixing of highly viscous fluids using CFD, Chem. Eng. Sci. 61(2006) 2913-2920. [29] E.S.S. Szalai, P. Arratia, K. Johnson, F.J.J. Muzzio, Mixing analysis in a tank stirred with Ekato Intermig® impellers, Chem. Eng. Sci. 59(2004) 3793-3805. [30] Y. Bao, L. Chen, Z. Gao, J. Chen, Local void fraction and bubble size distributions in cold-gassed and hot-sparged stirred reactors, Chem. Eng. Sci. 65(2010) 976-984. [31] M. Xie, J. Xia, Z. Zhou, J. Chu, Y. Zhuang, S. Zhang, Flow pattern, mixing, gas hold-up and mass transfer coefficient of triple-impeller configurations in stirred tank bioreactors, Ind. Eng. Chem. Res. 53(2014) 5941-5953. [32] J. Zhang, Z. Gao, Y. Cai, Z. Cai, J. Yang, Y. Bao, Mass transfer in gas-liquid stirred reactor with various triple-impeller combinations, Chin. J. Chem. Eng. 24(2016) 703-710. [33] A. Bombač, Effects of geometrical parameters on Newton number in an aerated stirred tank, Stroj. Vestn.-J. Mech. E 44(1998) 105-116. [34] M. Nocentini, D. Fajner, G. Pasquali, F. Magelli, Gas-liquid mass transfer and holdup in vessels stirred with multiple Rushton turbines:Water and water-glycerol solutions, Ind. Eng. Chem. Res. 32(1993) 19-26. [35] J.M.T. Vasconcelos, S.S. Alves, J.M. Barata, Mixing in gas-liquid contactors agitated by multiple turbines, Chem. Eng. Sci. 50(1995) 2343-2354. [36] T.T. Devi, B. Kumar, Comparison of flow patterns of dual Rushton and CD-6 impellers, Theor. Found. Chem. Eng. 47(2013) 344-355. [37] J.-Y.Y. Xia, Y.-H.H. Wang, S.-L.L. Zhang, N. Chen, P. Yin, Y.-P.P. Zhuang, J. Chu, Fluid dynamics investigation of variant impeller combinations by simulation and fermentation experiment, Biochem. Eng. J. 43(2009) 252-260. [38] M. Jahoda, L. Tomášková, M. Moštěk, CFD prediction of liquid homogenisation in a gas-liquid stirred tank, Chem. Eng. Res. Des. 87(2009) 460-467. [39] D.Y. Luan, Q. Chen, S.J. Zhou, Numerical simulation and analysis of power consumption and Metzner-Otto constant for impeller of 6PBT, Chin. J. Mech. Eng. 27(2014) 635-640. [40] P.R. Gogate, A.A.C.M. Beenackers, A.B. Pandit, Multiple-impeller systems with a special emphasis on bioreactors:A critical review, Biochem. Eng. J. 6(2000) 109-144. [41] J.B. Joshi, N.K. Nere, C.V. Rane, B.N. Murthy, C.S. Mathpati, A.W. Patwardhan, V.V. Ranade, CFD simulation of stirred tanks:Comparison of turbulence models. Part I:Radial flow impellers, Can. J. Chem. Eng. 89(2011) 23-82. [42] G.L. Lane, M.P. Schwarz, G.M. Evans, Numerical modelling of gas-liquid flow in stirred tanks, Chem. Eng. Sci. 60(2005) 2203-2214. [43] G.L. Lane, Improving the accuracy of CFD predictions of turbulence in a tank stirred by a hydrofoil impeller, Chem. Eng. Sci. 169(2017) 188-211. [44] D. Cheng, S. Wang, C. Yang, Z.-S. Mao, Numerical simulation of turbulent flow and mixing in gas-liquid-liquid stirred tanks, Ind. Eng. Chem. Res. 56(45) (2017) 13050-13063. [45] C. Oniscu, A.-I.I. Galaction, D. Cascaval, F. Ungureanu, Modeling of mixing in stirred bioreactors 2. Mixing time for non-aerated broths, Biochem. Eng. J. 12(2002) 61-69. [46] S.L.L. Yeoh, G. Papadakis, M. Yianneskis, Determination of mixing time and degree of homogeneity in stirred vessels with large eddy simulation, Chem. Eng. Sci. 60(2005) 2293-2302. [47] G. Montante, M. Moštěk, M. Jahoda, F. Magelli, CFD simulations and experimental validation of homogenisation curves and mixing time in stirred Newtonian and pseudoplastic liquids, Chem. Eng. Sci. 60(2005) 2427-2437. [48] R. Zadghaffari, J.S. Moghaddas, J. Revstedt, A mixing study in a double-Rushton stirred tank, Comput. Chem. Eng. 33(2009) 1240-1246. [49] Q. Zhang, Y. Yong, Z.S. Mao, C. Yang, C. Zhao, Experimental determination and numerical simulation of mixing time in a gas-liquid stirred tank, Chem. Eng. Sci. 64(2009) 2926-2933. [50] F. Kerdouss, A. Bannari, P. Proulx, CFD modeling of gas dispersion and bubble size in a double turbine stirred tank, Chem. Eng. Sci. 61(2006) 3313-3322. [51] Z. Rek, J. Gregorc, M. Bouaifi, C. Daniel, Numerical simulation of gas jet in liquid crossflow with high mean jet to crossflow velocity ratio, Chem. Eng. Sci. 172(2017) 667-676. [52] G. Montante, D. Horn, A. Paglianti, Gas-liquid flow and bubble size distribution in stirred tanks, Chem. Eng. Sci. 63(2008) 2107-2118. [53] M. Petitti, A. Nasuti, D.L. Marchisio, M. Vanni, G. Baldi, N. Mancini, F. Podenzani, Bubble size distribution modeling in stirred gas-liquid reactors with QMOM augmented by a new correction algorithm, AICHE J. 56(2010) 36-53. [54] M. Taghavi, R. Zadghaffari, J. Moghaddas, Y. Moghaddas, Experimental and CFD investigation of power consumption in a dual Rushton turbine stirred tank, Chem. Eng. Res. Des. 89(2011) 280-290. [55] S. Murthy, S. Jayanti, CFD study of power and mixing time for paddle mixing in unbaffled vessels, Chem. Eng. Res. Des. 80(2002) 482-498. [56] S.U. Ahmed, P. Ranganathan, A. Pandey, S. Sivaraman, Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor, J. Biosci. Bioeng. 109(2010) 588-597. [57] A. Amanullah, S.A.A. Hjorth, A.W.W. Nienow, Cavern sizes generated in highly shear thinning viscous fluids by SCABA 3SHP1 impellers, Food Bioprod. Process. Trans. Inst. Chem. Eng. Part C. 75(1997) 232-238. [58] A. Bombač, I. Žun, Gas-filled cavity structures and local void fraction distribution in vessel with dual-impellers, Chem. Eng. Sci. 55(2000) 2995-3001. [59] A. Bombač, Z. Rek, J. Levec, Void fraction distribution in a bisectional bubble column reactor, AICHE J. (2019) 1-19. [60] A.R. Khopkar, G.R. Kasat, A.B. Pandit, V.V. Ranade, CFD simulation of mixing in tall gas-liquid stirred vessel:Role of local flow patterns, Chem. Eng. Sci. 61(2006) 2921-2929. [61] K.H. Javed, T. Mahmud, J.M. Zhu, Numerical simulation of turbulent batch mixing in a vessel agitated by a Rushton turbine, Chem. Eng. Process. Process Intensif. 45(2006) 99-112. [62] A. Ochieng, M.S. Onyango, A. Kumar, K. Kiriamiti, P. Musonge, Mixing in a tank stirred by a Rushton turbine at a low clearance, Chem. Eng. Process. Process Intensif. 47(2008) 842-851. [63] ANSYS Fluent Population Balance Module Manual2015. [64] L. Pakzad, F. Ein-Mozaffari, S.R. Upreti, A. Lohi, Evaluation of the mixing of nonNewtonian biopolymer solutions in the reactors equipped with the coaxial mixers through tomography and CFD, Chem. Eng. J. 215-216(2013) 279-296. [65] H. Wang, X. Jia, X. Wang, Z. Zhou, J. Wen, J. Zhang, CFD modeling of hydrodynamic characteristics of a gas-liquid two-phase stirred tank, Appl. Math. Model. 38(2014) 63-92. [66] C. Zheng, J. Guo, C. Wang, Y. Chen, H. Zheng, Z. Yan, Q. Chen, Experimental study and simulation of a three-phase flow stirred bioreactor, Chin. J. Chem. Eng. 27(3) (2019) 649-659. [67] Y. Bao, B. Wang, M. Lin, Z. Gao, J. Yang, Influence of impeller diameter on overall gas dispersion properties in a sparged multi-impeller stirred tank, Chin. J. Chem. Eng. 23(2015) 890-896. [68] ANSYS, Fluent Theory Guide, 2015. [69] M. Ammar, W. Chtourou, Z. Driss, M.S. Abid, Numerical investigation of turbulent flow generated in baffled stirred vessels equipped with three different turbines in one and two-stage system, Energy. 36(2011) 5081-5093. [70] L. Schiller, A. Naumann, A drag coefficient correlation, Z. Vereins Dtsch. Ing. 77(1935) 318-320. [71] X. Li, G. Xiaoping, Z. Rongtao, Y. Ning, L. Mingyan, CFD simulation of gas dispersion in a stirred tank of dual Rushton turbines, Int. J. Chem. React. Eng. 15(2017) 1-13. [72] H. Luo, H.F. Svendsen, Theoretical model for drop and bubble breakup in turbulent dispersions, AICHE J. 42(1996) 1225-1233. [73] B. Mayr, A. Moser, E. Nagy, P. Horvat, Scale-up on basis of structured mixing models:A new concept, Biotechnol. Bioeng. 43(2004) 195-206. [74] Z. Zhang, W. Zhang, Z.J. Zhai, Q.Y. Chen, Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD:Part 2-comparison with experimental data from literature, HVAC&R Res. 13(2007) 871-886. |
[1] | Mingzhi Li, Zhikai Liu, Wang Yao, Chao Xu, Yangping Yu, Mei Yang, Guangwen Chen. Ultrasonic cavitation-enabled microfluidic approach toward the continuous synthesis of cesium lead halide perovskite nanocrystals [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 32-41. |
[2] | Wenting Fan, Fang Zhao, Ming Chen, Jian Li, Xuhong Guo. An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 85-91. |
[3] | Abdelgadir Bashir Banaga, Yan-Bin Li, Zhi-Hao Li, Bao-Chang Sun, Guang-Wen Chu. Experimental investigation of the mixing efficiency via intensity of segregation along axial direction of a rotating bar reactor [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 153-159. |
[4] | Junhao Wang, Shugang Ma, Peng Chen, Zhipeng Li, Zhengming Gao, J. J. Derksen. Mixing of miscible shear-thinning fluids in a lid-driven cavity [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 112-123. |
[5] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 50-62. |
[6] | Shuangfei Zhao, Yingying Nie, Wenyan Zhang, Runze Hu, Lianzhu Sheng, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 255-265. |
[7] | Tian Zhang, Qingshan Huang, Shujun Geng, Aqiang Chen, Yan Liu, Haidong Zhang. Impacts of solid physical properties on the performances of a slurry external airlift loop reactor integrating mixing and separation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 1-12. |
[8] | Songsong Wang, Hong Li, Changyuan Tao, Renlong Liu, Yundong Wang, Zuohua Liu. Study on cavern evolution and performance of three mixers in agitation of yield-pseudoplastic fluids [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 111-122. |
[9] | Liying Chen, Junheng Guo, Wenpeng Li, Shuchun Zhao, Wei Li, Jinli Zhang. A numerical study of mixing intensification for highly viscous fluids in multistage rotor–stator mixers [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 218-230. |
[10] | Zhen Wan, Youjun Lu. Numerical simulation of local and global mixing/segregation characteristics in a gas–solid fluidized bed [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 72-86. |
[11] | Fang Yang, Wei Zhao, Guiren Wang. Electrokinetic mixing of two fluids with equivalent conductivity [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 256-260. |
[12] | Guina Yi, Ziqi Cai, Zhengming Gao, J.J. Derksen. Impingement and mixing dynamics of micro-droplets on a solid surface [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 66-77. |
[13] | Jie Ju, Xianjian Duan, Bismark Sarkodie, Yanjie Hu, Hao Jiang, Chunzhong Li. Numerical simulation of flow field and residence time of nanoparticles in a 1000-ton industrial multi-jet combustion reactor [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 86-99. |
[14] | Zhuotai Jia, Lele Xu, Xiaoxia Duan, Zai-Sha Mao, Qinghua Zhang, Chao Yang. CFD simulation of flow and mixing characteristics in a stirred tank agitated by improved disc turbines [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 95-107. |
[15] | Chunhui Li, Bin Wu, Junjie Zhang, Peicheng Luo. Effect of swirling addition on the liquid mixing performance in a T-jets mixer [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 108-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||