[1] A.N. Kay Lup, F. Abnisa, W.M.A. Wan Daud, M.K. Aroua, A review on reaction mechanisms of metal-catalyzed deoxygenation process in bio-oil model compounds, Appl. Catal. A Gen. 541(2017) 87-106.[2] P.M. Mortensen, J.-D. Grunwaldt, P.A. Jensen, K.G. Knudsen, A.D. Jensen, A review of catalytic upgrading of bio-oil to engine fuels, Appl. Catal. A Gen. 407(2011) 1-19.[3] D. Prochazkova, P. Zamostny, M. Bejblova, L. Cerveny, J. Cejka, Hydrodeoxygenation of aldehydes catalyzed by supported palladium catalysts, Appl. Catal. A Gen. 332(2007) 56-64.[4] S. Echeandia, B. Pawelec, V.L. Barrio, P.L. Arias, J.F. Cambra, C.V. Loricera, J.L.G. Fierro, Enhancement of phenol hydrodeoxygenation over Pd catalysts supported on mixed HY zeolite and Al2O3. An approach to O-removal from bio-oils, Fuel 117(2014) 1061-1073.[5] Z. He, X. Wang, Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading, Catal. Sustain. Energy 1(2012) 28-52.[6] J. Zhang, B. Wang, E. Nikolla, J.W. Medlin, Directing reaction pathways through controlled reactant binding at Pd-TiO2 interfaces, Angew. Chem. 56(2017) 1-6.[7] Y. Hong, H. Zhang, J. Sun, K.M. Ayman, A.J.R. Hensley, M. Gu, M.H. Engelhard, J.-S. McEwen, Y. Wang, Synergistic catalysis between Pd and Fe in gas phase hydrodeoxygenation of m-cresol, ACS Catal. 4(2014) 3335-3345.[8] P.S. Rezaei, H. Shafaghat, W.M.A. Wan Daud, Origin of catalyst deactivation in atmospheric hydrogenolysis of m-cresol over Fe/HBeta, RSC Adv. 5(2015) 51278-51285.[9] A.T. To, D.E. Resasco, Hydride transfer between a phenolic surface pool and reactant paraffins in the catalytic cracking of m-cresol/hexanes mixtures over an HY zeolite, J. Catal. 329(2015) 57-68.[10] S.J. Tauster, Strong metal-support interactions, Acc. Chem. Res. 20(1987) 389-394.[11] S.J. Tauster, S.C. Fung, R.L. Garten, Strong metal-support interactions. Group 8 noble metals supported on TiO2, J. Am. Chem. Soc. 100(1978) 170-175.[12] P.M. de Souza, R.C. Rabelo-Neto, L.E.P. Borges, G. Jacobs, B.H. Davis, T. Sooknoi, D.E. Resasco, F.B. Noronha, Role of keto intermediates in the hydrodeoxygenation of phenol over Pd on oxophilic supports, ACS Catal. 5(2015) 1318-1329.[13] A.N. Kay Lup, F. Abnisa, W.M.A. Wan Daud, M.K. Aroua, A review on reactivity and stability of heterogeneous metal catalysts for deoxygenation of bio-oil model compounds, J. Ind. Eng. Chem. 56(2017) 1-34.[14] M. Chia, Y.J. Pagan-Torres, D. Hibbitts, Q. Tan, H.N. Pham, A.K. Datye, M. Neurock, R.J. Davis, J.A. Dumesic, Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts, J. Am. Chem. Soc. 133(2011) 12675-12689.[15] J. Zhang, L.D. Ellis, B. Wang, M.J. Dzara, C. Sievers, S. Pylypenko, E. Nikolla, J.W. Medlin, Control of interfacial acid-metal catalysis with organic monolayers, Nat. Catal. 1(2018) 148-155.[16] J. Sa, A. Srebowata, Hydrogenation with Low-cost Transition Metals, CRC Press, Boca Raton, 2016.[17] C. Su, C.-C. Chen, C.-S. Tsai, J.-L. Lin, J.-C. Lin, The adsorption, thermal desorption and photochemistry of methyl iodide on an Ag-covered TiO2(110) surface, J. Chin. Chem. Soc. 53(2006) 803-813.[18] X. Du, J. He, J. Zhu, L. Sun, S. An, Ag-deposited silica-coated Fe3O4 magnetic nanoparticles catalyzed reduction of p-nitrophenol, Appl. Surf. Sci. 258(2012) 2717-2723.[19] Y. Mikami, A. Noujima, T. Mitsudome, T. Mizugaki, K. Jitsukawa, K. Kaneda, Selective deoxygenation of styrene oxides under a CO atmosphere using silver nanoparticle catalyst, Tetrahedron Lett. 51(2010) 5466-5468.[20] X.-Y. Dong, Z.-W. Gao, K.-F. Yang, W.-Q. Zhang, L.-W. Xu, Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals, Catal. Sci. Technol. 5(2015) 2554-2574.[21] T. Mitsudome, A. Noujima, Y. Mikami, T. Mizugaki, K. Jitsukawa, K. Kaneda, Supported gold and silver nanoparticles for catalytic deoxygenation of epoxides into alkenes, Angew. Chem. 122(2010) 5677-5680.[22] T. Mitsudome, Y. Mikami, M. Matoba, T. Mizugaki, K. Jitsukawa, K. Kaneda, Design of a silver-cerium dioxide core-shell nanocomposite catalyst for chemoselective reduction reactions, Angew. Chem. 51(2012) 136-139.[23] F. Jalid, T.S. Khan, F.Q. Mir, M.A. Haider, Understanding trends in hydrodeoxygenation reactivity of metal and bimetallic alloy catalysts from ethanol reaction on stepped surface, J. Catal. 353(2017) 265-273.[24] A.C. Lausche, H. Falsig, A.D. Jensen, F. Studt, Trends in the hydrodeoxygenation activity and selectivity of transition metal surfaces, Catal. Lett. 144(2014) 1968-1972.[25] H. Shafaghat, P.S. Rezaei, W.M.A. Wan Daud, Catalytic hydrodeoxygenation of simulated phenolic bio-oil to cycloalkanes and aromatic hydrocarbons over bifunctional metal/acid catalysts of Ni/HBeta, Fe/HBeta and NiFe/HBeta, J. Ind. Eng. Chem. 35(2016) 268-276.[26] P. Munnik, P.E. de Jongh, K.P. de Jong, Recent developments in the synthesis of supported catalysts, Chem. Rev. 115(2015) 6687-6718.[27] E. Marceau, X. Carrier, M. Che, Impregnation and drying, in:K.P. De Jong (Ed.), Synthesis of Solid Catalysts, Wiley-VCH, Germany 2010, pp. 59-82.[28] G. Alloncle, N. Gilon, C.-P. Lienemann, S. Morin, A new method for quantitative analysis of metal content in heterogeneous catalysts:Laser ablation-ICP-AES, C. R. Chim. 12(2009) 637-646.[29] S. Xing, P. Lv, J. Fu, J. Wang, P. Fan, L. Yang, Z. Yuan, Direct synthesis and characterization of pore-broadened Al-SBA-15, Microporous Mesoporous Mater. 239(2017) 316-327.[30] M.S. Zanuttini, B.O. Dalla Costa, C.A. Querini, M.A. Peralta, Hydrodeoxygenation of m-cresol with Pt supported over mild acid materials, Appl. Catal. A Gen. 482(2014) 352-361.[31] A.N. Kay Lup, F. Abnisa, W.M.A. Wan Daud, M.K. Aroua, Delayed volatiles release phenomenon at higher temperature in TGA via sample encapsulation technique, Fuel 234(2018) 422-429.[32] Q. Wu, C. Zhang, B. Zhang, X. Li, Z. Ying, T. Liu, W. Lin, Y. Yu, H. Cheng, F. Zhao, Highly selective Pt/ordered mesoporous TiO2-SiO2 catalysts for hydrogenation of cinnamaldehyde:The promoting role of Ti2+, J. Colloid Interface Sci. 463(2016) 75-82.[33] L. Wang, M. Zhang, M. Zhang, G. Sha, C. Liang, Hydrodeoxygenation of dibenzofuran over mesoporous silica COK-12 supported palladium catalysts, Energy Fuel 27(2013) 2209-2217.[34] Y. Shi, X.-L. Zhang, G. Feng, X. Chen, Z.-H. Lu, Ag-SiO2 nanocomposites with plumpudding structure as catalyst for hydrogenation of 4-nitrophenol, Ceram. Int. 41(2015) 14660-14667.[35] G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Surface area and pore texture of catalysts, Catal. Today 41(1998) 207-219.[36] H.E. Swanson, H.F. McMurdie, M.C. Morris, E.H. Evans, National Bureau of Standards Monograph, 25, Standard X-ray Diffraction Powder Patterns 7, United States Department of Commerce, Washington D.C., 1969[37] M.C. Morris, H.F. McMurdie, E.H. Evans, B. Paretzkin, H.S. Parker, N.C. Panagiotopoulos, National Bureau of Standards Monograph, 25, Standard X-ray Diffraction Powder Patterns 18, United States Department of Commerce, Washington D.C., 1981[38] G. Leofanti, G. Tozzola, M. Padovan, G. Petrini, S. Bordiga, A. Zecchina, Catalyst characterization:Characterization techniques, Catal. Today 34(1997) 307-327.[39] J.I. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J.R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd Kluwer Academic/Plenum Publishers, New York, 2003.[40] Y. Chu, Z. Yu, A. Zheng, H. Fang, H. Zhang, S.-J. Huang, S.-B. Liu, F. Deng, Acidic strengths of Bronsted and Lewis acid sites in solid acids scaled by 31P NMR chemical shifts of adsorbed trimethylphosphine, J. Phys. Chem. C 115(2011) 7660-7667.[41] T.J. Dines, C.H. Rochester, A.M. Ward, Infrared and Raman study of the surface acidity of titania-supported vanadia catalysts, J. Chem. Soc. Faraday Trans. 87(1991) 1611-1616.[42] M. Galan-Fereres, L.J. Alemany, R. Mariscal, M.A. Banares, J.A. Anderson, J.L.G. Fierro, Surface acidity and properties of titania-silica catalysts, Chem. Mater. 7(1995) 1342-1348.[43] B. Xin, L. Jing, Z. Ren, B. Wang, H. Fu, Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2, J. Phys. Chem. B 109(2005) 2805-2809.[44] A. Rismanchian, Y.-W. Chen, S.S.C. Chuang, In situ infrared study of photoreaction of ethanol on Au and Ag/TiO2, Catal. Today 264(2016) 16-22.[45] S.R. Seyedmonir, D.E. Strohmayer, G.J. Guskey, G.L. Geoffroy, M.A. Vannice, Characterization of supported silver catalysts. Ⅲ. Effects of support, pretreatment, and gaseous environment on the dispersion of Ag, J. Catal. 93(1985) 288-302.[46] R.G. Pearson, The transition-metal-hydrogen bond, Chem. Rev. 85(1985) 41-49.[47] T. Onfroy, G. Clet, S.B. Bukallah, T. Visser, M. Houalla, Acidity of titania-supported tungsten or niobium oxide catalysts:Correlation with catalytic activity, Appl. Catal. A Gen. 298(2006) 80-87.[48] C. Martin, I. Martin, C. del Moral, V. Rives, FT-IR assessment through pyridine adsorption of the surface acidity of alkali-doped MoO3/TiO2, J. Catal. 146(1994) 415-421.[49] C.D. Baertsch, K.T. Komala, Y.-H. Chua, E. Iglesia, Genesis of Bronsted acid sites during dehydration of 2-butanol on tungsten oxide catalysts, J. Catal. 205(2002) 44-57.[50] A.J.R. Hensley, Y. Hong, R. Zhang, H. Zhang, J. Sun, Y. Wang, J.-S. McEwen, Enhanced Fe2O3 reducibility via surface modification with Pd:Characterizing the synergy with Pd/Fe catalysts for hydrodeoxygenation reactions, ACS Catal. 4(2014) 3381-3392.[51] R.C. Nelson, B. Baek, P. Ruiz, B. Goundie, A. Brooks, M.C. Wheeler, B.G. Frederick, L.C. Grabow, R.N. Austin, Experimental and theoretical insights into the hydrogenefficient direct hydrodeoxygenation mechanism of phenol over Ru/TiO2, ACS Catal. 5(2015) 6509-6523.[52] K. Fottinger, E. Halwax, H. Vinek, Deactivation and regeneration of Pt containing sulfated zirconia and sulfated zirconia, Appl. Catal. A Gen. 301(2006) 115-122.[53] C. Zhang, L. Chen, H. Cheng, X. Zhu, Z. Qi, Atomically dispersed Pd catalysts for the selective hydrogenation of succinic acid to γ-butyrolactone, Catal. Today 276(2016) 55-61.[54] P. Sautet, F. Delbecq, Catalysis and surface organometallic chemistry:A view from theory and simulations, Chem. Rev. 110(2010) 1788-1806.[55] I.E. Wachs, Raman and IR studies of surface metal oxide species on oxide supports:Supported metal oxide catalysts, Catal. Today 27(1996) 437-455.[56] P.A. Redhead, Thermal desorption of gases, Vacuum 12(1962) 203-211.[57] A.N. Kay Lup, F. Abnisa, W.M.A. Wan Daud, M.K. Aroua, Acidity, oxophilicity and hydrogen sticking probability of supported metal catalysts for hydrodeoxygenation process, IOP Conf. Ser. Mater. Sci. Eng. 334(2018) 1-6.[58] S.-K. Wu, P.-C. Lai, Y.-C. Lin, H.-P. Wan, H.-T. Lee, Y.-H. Chang, Atmospheric hydrodeoxygenation of guaiacol over alumina-, zirconia-, and silica-supported nickel phosphide catalysts, ACS Sustain. Chem. Eng. 1(2013) 349-358.[59] Y.-K. Hong, D.-W. Lee, H.-J. Eom, K.-Y. Lee, The catalytic activity of Pd/WOx/γ-Al2O3 for hydrodeoxygenation of guaiacol, Appl. Catal. B Environ. 150-151(2014) 438-445.[60] B. Peng, C. Zhao, I. Mejia-Centeno, G.A. Fuentes, A. Jentys, J.A. Lercher, Comparison of kinetics and reaction pathways for hydrodeoxygenation of C3 alcohols on Pt/Al2O3, Catal. Today 183(2012) 3-9.[61] Y.T. Kim, J.A. Dumesic, G.W. Huber, Aqueous-phase hydrodeoxygenation of sorbitol:A comparative study of Pt/Zr phosphate and Pt-ReOx/C, J. Catal. 304(2013) 72-85.[62] L. Chen, Y. Zhu, H. Zheng, C. Zhang, B. Zhang, Y. Li, Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts, J. Mol. Catal. A Chem. 351(2011) 217-227.[63] Y. Liu, J. Chen, J. Zhang, Effects of the supports on activity of supported nickel catalysts for hydrogenation of m-dinitrobenzene to m-phenylenediamine, Chin. J. Chem. Eng. 15(2007) 63-67.[64] W. Karim, C. Spreafico, A. Kleibert, J. Gobrecht, J. Vandevondele, Y. Ekinci, J.A. van Bokhoven, Catalyst support effects on hydrogen spillover, Nature 541(2017) 68-71.[65] E. Furimsky, Catalytic hydrodeoxygenation, Appl. Catal. A Gen. 199(2000) 147-190.[66] K. Li, R. Wang, J. Chen, Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts, Energy Fuel 25(2011) 854-863.[67] J. Chen, L. Sun, R. Wang, J. Zhang, Hydrodechlorination of chlorobenzene over Ni2P/SiO2 catalysts:Influence of Ni2P loading, Catal. Lett. 133(2009) 346.[68] P. Gupta, V.L. Colvin, S.M. George, Hydrogen desorption kinetics from monohydride and dihydride species on silicon surfaces, Phys. Rev. B 37(1988) 8234-8243.[69] W.C. Conner, J.L. Falconer, Spillover in heterogeneous catalysis, Chem. Rev. 95(1995) 759-788.[70] J.T. Miller, B.L. Meyers, F.S. Modica, G.S. Lane, M. Vaarkamp, D.C. Koningsberger, Hydrogen temperature-programmed desorption (H2 TPD) of supported platinum catalysts, J. Catal. 143(1993) 395-408.[71] J.J. Spivey, G.W. Roberts, J.G. Goodwin Jr., S. Kim, W.D. Rhodes, Turnover frequencies in metal catalysis:Meanings, functionalities and relationships, in:J.J. Spivey, G.W. Roberts (Eds.), Catalysis, Royal Society of Chemistry, UK 2004, pp. 320-348.[72] H. Jiang, H. Yang, R. Hawkins, Z. Ring, Effect of palladium on sulfur resistance in Pt-Pd bimetallic catalysts, Catal. Today 125(2007) 282-290.[73] C. Chen, G. Chen, F. Yang, H. Wang, J. Han, Q. Ge, X. Zhu, Vapor phase hydrodeoxygenation and hydrogenation of m-cresol on silica supported Ni, Pd and Pt catalysts, Chem. Eng. Sci. 135(2015) 145-154. |