Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (7): 1461-1473.DOI: 10.1016/j.cjche.2018.08.027
• Selected Papers on Sustainable Chemical Process Systems • Previous Articles Next Articles
Wentao Tang, Prodromos Daoutidis
Received:
2018-06-12
Online:
2019-10-14
Published:
2019-07-28
Contact:
Prodromos Daoutidis
Wentao Tang, Prodromos Daoutidis
通讯作者:
Prodromos Daoutidis
Wentao Tang, Prodromos Daoutidis. Distributed control and optimization of process system networks: A review and perspective[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1461-1473.
Wentao Tang, Prodromos Daoutidis. Distributed control and optimization of process system networks: A review and perspective[J]. 中国化学工程学报, 2019, 27(7): 1461-1473.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.08.027
[1] P. Daoutidis, M. Zachar, S.S. Jogwar, Sustainability and process control:A survey and perspective, J. Process Control 44(2016) 184-206. [2] J.J. Siirola, T.F. Edgar, Process energy systems:Control, economic, and sustainability objectives, Comput. Chem. Eng. 47(2012) 134-144. [3] S.S. Jogwar, A.I. Torres, P. Daoutidis, Networks with large solvent recycle:Dynamics, hierarchical control, and a biorefinery application, AIChE J. 58(2012) 1764-1777. [4] M. Baldea, N.H. El-Farra, B.E. Ydstie, Dynamics and control of chemical process networks:Integrating physics, communication and computation, Comput. Chem. Eng. 51(2013) 42-54. [5] N.K. Shah, M.G. Ierapetritou, Short-term scheduling of a large-scale oil-refinery operations:Incorporating logistics details, AIChE J. 57(2011) 1570-1584. [6] M. Zachar, P. Daoutidis,Microgrid/macrogrid energy exchange:A novelmarket structure and stochastic scheduling, IEEE Trans. Smart Grid 8(2017) 178-189. [7] M.J. Risbeck, C.T. Maravelias, J.B. Rawlings, R.D. Turney, A mixed-integer linear programming model for real-time cost optimization of building heating, ventilation, and air conditioning equipment, Energy Build. 142(2017) 220-235. [8] D.J. Garcia, F. You, Supply chain design and optimization:Challenges and opportunities, Comput. Chem. Eng. 81(2015) 153-170. [9] A.P. Barbosa-Póvoa, Progresses and challenges in process industry supply chains optimization, Curr. Opin. Chem. Eng. 1(2012) 446-452. [10] M. Baldea, P. Daoutidis, Dynamics and Nonlinear Control of Integrated Process Systems, Cambridge University Press, 2012. [11] D. Yue, F. You, Optimal supply chain design and operations under multi-scale uncertainties:Nested stochastic robust optimization modeling framework and solution algorithm, AIChE J. 62(2016) 3041-3055. [12] L. Luo, F. Cheng, T. Qiu, J. Zhao, Refined convergent cross-mapping for disturbance propagation analysis of chemical processes, Comput. Chem. Eng. 106(2017) 1-16. [13] S. Riverso, M. Farina, G. Ferrari-Trecate, Plug-and-play state estimation and application to distributed output-feedback model predictive control, Eur. J. Control 25(2015) 17-26. [14] D. Chilin, J. Liu, D. Muñoz de la Peña, P.D. Christofides, J.F. Davis, Detection, isolation and handling of actuator faults in distributed model predictive control systems, J. Process Control 20(2010) 1059-1075. [15] S. Riverso, F. Boem, G. Ferrari-Trecate, T. Parisini, Plug-and-play fault detection and control-reconfiguration for a class of nonlinear large-scale constrained systems, IEEE Trans. Autom. Control 61(2016) 3963-3978. [16] D.E. Seborg, D.A. Mellichamp, T.F. Edgar, F.J. Doyle Ⅲ, Process Dynamics and Control, John Wiley & Sons, 2010. [17] C.T. Maravelias, C. Sung, Integration of production planning and scheduling:Overview, challenges and opportunities, Comput. Chem. Eng. 33(2009) 1919-1930. [18] Y. Chu, F. You, Model-based integration of control and operations:Overview, challenges, advances, and opportunities, Comput. Chem. Eng. 83(2015) 2-20. [19] L.S. Dias, M.G. Ierapetritou, From process control to supply chain management:An overview of integrated decision making strategies, Comput. Chem. Eng. 106(2017) 826-835. [20] P. Daoutidis, J.H. Lee, I. Harjunkoski, S. Skogestad, M. Baldea, C. Georgakis, Integrating operations and control:A perspective and roadmap for future research, Comput. Chem. Eng. 115(2018) 179-184. [21] I.E. Grossmann, Enterprise-wide optimization:A new frontier in process systems engineering, AIChE J. 51(2005) 1846-1857. [22] I.E. Grossmann, Advances in mathematical programming models for enterprise-wide optimization, Comput. Chem. Eng. 47(2012) 2-18. [23] C.T. Maravelias, General framework and modeling approach classification for chemical production scheduling, AIChE J. 58(2012) 1812-1828. [24] I. Harjunkoski, C.T. Maravelias, P. Bongers, P.M. Castro, S. Engell, I.E. Grossmann, J. Hooker, C. Me·ndez, G. Sand, J. Wassick, Scope for industrial applications of production scheduling models and solution methods, Comput. Chem. Eng. 62(2014) 161-193. [25] P.M. Castro, I.E. Grossmann, Q. Zhang, Expanding scope and computational challenges in process scheduling, Comput. Chem. Eng. 114(2018) 14-42. [26] J.B. Rawlings, D.Q. Mayne, Model Predictive Control:Theory and Design, Nob Hill Publishing, 2009. [27] D.Q. Mayne, Model predictive control:Recent developments and future promise, Automatica 50(2014) 2967-2986. [28] J.B. Rawlings, D. Angeli, C.N. Bates, Fundamentals of economic model predictive control, in:Proc. 51st Conf. Decis. Control (CDC), IEEE, 2012, pp. 3851-3861. [29] M. Ellis, J. Liu, P.D. Christofides, Economic Model Predictive Control, Springer, 2016. [30] D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation:Numerical Methods, Prentice Hall, 1989. [31] C. Langbort, R.S. Chandra, R. D'Andrea, Distributed control design for systems interconnected over an arbitrary graph, IEEE Trans. Autom. Control 49(2004) 1502-1519. [32] F. Lin, M. Fardad, M.R. Jovanović, Design of optimal sparse feedback gains via the alternating direction method of multipliers, IEEE Trans. Autom. Control 58(2013) 2426-2431. [33] D. Hioe, J. Bao, B.E. Ydstie, Dissipativity analysis for networks of process systems, Comput. Chem. Eng. 50(2013) 207-219. [34] M.J. Tippett, J. Bao, Dissipativity based distributed control synthesis, J. Process Control 23(2013) 755-766. [35] R. Scattolini, Architectures for distributed and hierarchical model predictive control-A review, J. Process Control 19(2009) 723-731. [36] P.D. Christofides, R. Scattolini, D. Muñoz de la Peña, J. Liu, Distributed model predictive control:A tutorial review and future research directions, Comput. Chem. Eng. 51(2013) 21-41. [37] R.R. Negenborn, J.M. Maestre, Distributed model predictive control:An overview and roadmap of future research opportunities, IEEE Control. Syst. 34(2014) 87-97. [38] N. Gatsis, G.B. Giannakis, Residential load control:Distributed scheduling and convergence with lost AMI messages, IEEE Trans. Smart Grid 3(2012) 770-786. [39] S.-C. Tsai, Y.-H. Tseng, T.-H. Chang, Communication-efficient distributed demand response:A randomized ADMM approach, IEEE Trans. Smart Grid 8(2017) 1085-1095. [40] A.T. Georgiou, K.R. Sheth, Plant-wide dynamic economic optimization:Key challenges and new opportunities, in:Foundations of Computer Aided Process Operations/Chemical Process Control (FOCAPO/CPC 2017), 2017. http://focapocpc.org/pdf/Georgiou.pdf. [41] S. Harwood, S. Kameswaran, T.A. Badgwell, Analysis of the alternating direction method of multipliers for the optimization of distributed nonconvex systems, in:2017 AIChE Annual Meeting, 2017. https://www.aiche.org/conferences/aiche-annualmeeting/2017/proceeding/paper/522fanalysis-alternatingdirection-method-multipliers-optimization-distributednonconvex-systems. [42] R.A. Gupta, M.-Y. Chow, Networked control system:Overview and research trends, IEEE Trans. Ind. Electron. 57(2010) 2527-2535. [43] X. Ge, F. Yang, Q.-L. Han, Distributed networked control systems:A brief overview, Inf. Sci. 380(2017) 117-131. [44] L. Zhang, H. Gao, O. Kaynak, Network-induced constraints in networked control systems-A survey, IEEE Trans. Ind. Inform. 9(2013) 403-416. [45] R. Zhang, J. Kwok, Asynchronous distributed ADMM for consensus optimization, Proc. 31st Int. Conf. Mach. Learn. (ICML) (2014) 1701-1709. [46] T.-H. Chang, M. Hong, W.-C. Liao, X. Wang, Asynchronous distributed ADMM for large-scale optimization-Part I:Algorithm and convergence analysis, IEEE Trans. Signal Process. 64(2016) 3118-3130. [47] M. Schmidt, N.L. Roux, F.R. Bach, Convergence rates of inexact proximalgradient methods for convex optimization, Proc. 24th Int. Conf. Neural Inf. Process. Syst. (NIPS'11) (2011) 1458-1466. [48] Y. Pu, M.N. Zeilinger, C.N. Jones, Inexact fast alternating minimization algorithm for distributed model predictive control, in:Proc. 53rd Conf. Decis. Control (CDC), IEEE, 2014, pp. 5915-5921. [49] Y. Pu, M.N. Zeilinger, C.N. Jones, Quantization design for distributed optimization, IEEE Trans. Autom. Control 62(2017) 2107-2120. [50] M. Zhong, C.G. Cassandras, Asynchronous distributed optimization with event-driven communication, IEEE Trans. Autom. Control 55(2010) 2735-2750. [51] M. Meinel, M. Ulbrich, S. Albrecht, A class of distributed optimization methods with event-triggered communication, Comput. Optim. Appl. 57(2014) 517-553. [52] P. Wan, M.D. Lemmon, Optimal power flow in microgrids using eventtriggered optimization, Proc. 2010 Amer. Control Conf. (ACC), IEEE (2010) 2521-2526. [53] C. Li, X. Yu, W. Yu, T. Huang, Z.-W. Liu, Distributed event-triggered scheme for economic dispatch in smart grids, IEEE Trans. Ind. Inform. 12(2016) 1775-1785. [54] T. Yang, Trading computation for communication:Distributed stochastic dual coordinate ascent, Proc. 26th Int. Conf. Neural Inf. Process. Syst. (NIPS'13) (2013) 629-637. [55] M. Jaggi, V. Smith, M. Takác, J. Terhorst, S. Krishnan, T. Hofmann, M.I. Jordan, Communication-efficient distributed dual coordinate ascent, Proc. 27th Int. Conf. Neural Inf. Process. Syst. (NIPS'14) (2014) 3068-3076. [56] O. Shamir, N. Srebro, T. Zhang, Communication-efficient distributed optimization using an approximate Newton-type method, Proc. 31st Int. Conf. Mach. Learn. (ICML) (2014) 1000-1008. [57] S.J. Reddi, J. Konec ńý, P. Richtárik, B. Póczós, A. Smola, AIDE:Fast and communication efficient distributed optimization arXiv preprint arXiv:1608.06879, 2016. [58] M.B.G. Cloosterman, N. van de Wouw, W. Heemels, H. Nijmeijer, Stability of networked control systems with uncertain time-varying delays, IEEE Trans. Autom. Control 54(2009) 1575-1580. [59] H. Lin, P.J. Antsaklis, Stability and stabilizability of switched linear systems:A survey of recent results, IEEE Trans. Autom. Control 54(2009) 308-322. [60] J. Liu, D. Muñoz de la Peña, P.D. Christofides, Distributed model predictive control of nonlinear systems subject to asynchronous and delayed measurements, Automatica 46(2010) 52-61. [61] J. Liu, X. Chen, D. Muñoz de la Peña, P.D. Christofides, Iterative distributed model predictive control of nonlinear systems:Handling asynchronous, delayed measurements, IEEE Trans. Autom. Control 57(2012) 528-534. [62] H. Li, Y. Shi, Distributed receding horizon control of large-scale nonlinear systems:Handling communication delays and disturbances, Automatica 50(2014) 1264-1271. [63] D.Yue,Q.-L.Han,C.Peng,Statefeedbackcontrollerdesignofnetworkedcontrol systems, in:Proc. 2004 Int. Conf. Control Appl, IEEE, 2004, pp. 242-247. [64] D.E. Quevedo, D. Nešić, Input-to-state stability of packetized predictive control over unreliable networks affected by packet dropouts, IEEE Trans. Autom. Control 56(2011) 370-375. [65] Y.-B. Zhao, J. Kim, G.-P. Liu, D. Rees, Compensation and stochastic modeling of discrete-time networked control systems with data packet disorder, Int. J. Control Autom. Syst. 10(2012) 1055-1063. [66] M. Heidarinejad, J. Liu, D. Muñoz de la Peña, J.F. Davis, P.D. Christofides, Handling communication disruptions in distributed model predictive control, J. Process Control 21(2011) 173-181. [67] H. Li, M.-Y. Chow, Z. Sun, Optimal stabilizing gain selection for networked control systems with time delays and packet losses, IEEE Trans. Control Syst. Technol. 17(2009) 1154-1162. [68] L.A. Montestruque, P. Antsaklis, Stability of model-based networked control systems with time-varying transmission times, IEEE Trans. Autom. Control 49(2004) 1562-1572. [69] I.G. Polushin, P.X. Liu, C.-H. Lung, On the model-based approach to nonlinear networked control systems, Automatica 44(2008) 2409-2414. [70] M. Tabbara, D. Nešić, A.R. Teel, Stability of wireless and wireline networked control systems, IEEE Trans. Autom. Control 52(2007) 1615-1630. [71] W.M.H. Heemels, A.R. Teel, N. Van de Wouw, D. Nešić, Networked control systems with communication constraints:Tradeoffs between transmission intervals, delays and performance, IEEE Trans. Autom. Control 55(2010) 1781-1796. [72] E. Fridman, M. Dambrine, Control under quantization, saturation and delay:An LMI approach, Automatica 45(2009) 2258-2264. [73] Y. Ishido, K. Takaba, D.E. Quevedo, Stability analysis of networked control systems subject to packet-dropouts and finite level quantization, Syst. Control Lett. 60(2011) 325-332. [74] R. Postoyan, N. Van de Wouw, D. Nešić, W.M.H. Heemels, Tracking control for nonlinear networked control systems, IEEE Trans. Autom. Control 59(2014) 1539-1554. [75] F. Forni, S. Galeani, D. Nešić, L. Zaccarian, Event-triggered transmission for linear control over communication channels, Automatica 50(2014) 490-498. [76] R. Postoyan, P. Tabuada, D. Nešić, A. Anta, A framework for the eventtriggered stabilization of nonlinear systems, IEEE Trans. Autom. Control 60(2015) 982-996. [77] A. Girard, Dynamic triggering mechanisms for event-triggered control, IEEE Trans. Autom. Control 60(2015) 1992-1997. [78] H. Li, Y. Shi, Event-triggered robust model predictive control of continuoustime nonlinear systems, Automatica 50(2014) 1507-1513. [79] F.D.Brunner,M.Heemels,F.Allgöwer,Robustself-triggeredMPCforconstrained linear systems:A tube-based approach, Automatica 72(2016) 73-83. [80] P. Daoutidis, W. Tang, S.S. Jogwar, Decomposing complex plants for distributed control:Perspectives from network theory, Comput. Chem. Eng. 114(2018) 43-51. [81] I.S. Duff, A survey of sparse matrix research, Proc. IEEE 65(1977) 500-535. [82] D.B. West, Introduction to Graph Theory, Prentice Hall, 2001. [83] A. Zečević, D.D. Šiljak, Control of Complex Systems:Structural Constraints and Uncertainty, Springer, 2010. [84] A. Michel, R. Miller, W. Tang, Lyapunov stability of interconnected systems:Decomposition into strongly connected subsystems, IEEE Trans. Circ. Syst. 25(1978) 799-809. [85] V. Pichai, M.E. Sezer, D.D. Šiljak, A graph-theoretic algorithm for hierarchical decomposition of dynamic systems with applications to estimation and control, IEEE Trans. Syst. Man Cybern. 13(1983) 197-207. [86] D.D. Šiljak, Large-scale Dynamic Systems:Stability and Structure, North Holland, 1978. [87] C.-E. Bichot, P. Siarry, Graph Partitioning, Wiley, 2011. [88] K. Hangos, Zs. Tuza, Optimal control structure selection for process systems, Comput. Chem. Eng. 25(2001) 1521-1536. [89] J. Anderson, A. Papachristodoulou, A decomposition technique for nonlinear dynamical system analysis, IEEE Trans. Autom. Control 57(2012) 1516-1521. [90] C. Ocampo-Martínez, S. Bovo, V. Puig, Partitioning approach oriented to the decentralised predictive control of large-scale systems, J. Process Control 21(2011) 775-786. [91] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, C. Schulz, Recent advances in graph partitioning, in:L. Kliemann, P. Sanders (Eds.), Algorithm Engineering:Selected Results and Surveys, Springer, 2016, pp. 117-158. [92] A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering:A review, ACM Comput. Surv. (CSUR) 31(1999) 264-323. [93] R. Xu, D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Netw. 16(2005) 645-678. [94] F. Murtagh, P. Contreras, Algorithms for hierarchical clustering:An overview, Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2(2012) 86-97. [95] P. Daoutidis, C. Kravaris, Structural evaluation of control configurations for multivariable nonlinear processes, Chem. Eng. Sci. 47(1992) 1091-1107. [96] S. Heo, W.A. Marvin, P. Daoutidis, Automated synthesis of control configurations for process networks based on structural coupling, Chem. Eng. Sci. 136(2015) 76-87. [97] L. Kang, W. Tang, Y. Liu, P. Daoutidis, Control configuration synthesis using agglomerative hierarchical clustering:A graph-theoretic approach, J. Process Control 46(2016) 43-54. [98] M. Moharir, L. Kang, P. Daoutidis, A. Almansoori, Graph representation and decomposition of ODE/hyperbolic PDE systems, Comput. Chem. Eng. 106(2017) 532-543. [99] S. Heo, P. Daoutidis, Control-relevant decomposition of process networks via optimization-based hierarchical clustering, AIChE J. 62(2016) 3177-3188. [100] A.-L. Barabási, Network Science, Cambridge University Press, 2016. [101] M. Girvan, M.E.J. Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci. 99(2002) 7821-7826. [102] V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks, J. Stat. Mech. Theory Exp. 2008(2008) P10008. [103] M.E.J. Newman, M. Girvan, Finding and evaluating community structure in networks, Phys. Rev. E 69(2004) 026113. [104] M.E.J. Newman, Modularity and community structure in networks, Proc. Natl. Acad. Sci. 103(2006) 8577-8582. [105] S. Fortunato, D. Hric, Community detection in networks:A user guide, Phys. Rep. 659(2016) 1-44. [106] U.N. Raghavan, R. Albert, S. Kumara, Near linear time algorithm to detect community structures in large-scale networks, Phys. Rev. E 76(2007) 036106. [107] J. Xie, B.K. Szymanski, X. Liu, SLPA:Uncovering overlapping communities in social networks via a speaker-listener interaction dynamic process, Proc. 11th Int. Conf. Data Min. Data Min. Workshops (ICDMW), IEEE (2011) 344-349. [108] M. Rosvall, C.T. Bergstrom, Maps of random walks on complex networks reveal community structure, Proc. Natl. Acad. Sci. U. S. A. 105(2008) 1118-1123. [109] B. Karrer, M.E.J. Newman, Stochastic blockmodels and community structure in networks, Phys. Rev. E 83(2011) 016107. [110] T.P. Peixoto, Nonparametric Bayesian inference of the microcanonical stochastic block model, Phys. Rev. E 95(2017) 012317. [111] S.S. Jogwar, P. Daoutidis, Community-based synthesis of distributed control architectures for integrated process networks, Chem. Eng. Sci. 172(2017) 434-443. [112] W. Tang, P. Daoutidis, Network decomposition for distributed control through community detection in input-output bipartite graphs, J. Process Control 64(2018) 7-14. [113] W. Tang, D.B. Pourkargar, P. Daoutidis, Relative time-averaged gain array (RTAGA) for distributed control-oriented network decomposition, AIChE J. 64(2018) 1682-1690. [114] M. Ellis, P.D. Christofides, Selection of control configurations for economic model predictive control systems, AIChE J. 60(2014) 3230-3242. [115] R. Chen, K. Dave, T.J. McAvoy, M. Luyben, A nonlinear dynamic model of a vinyl acetate process, Ind. Eng. Chem. Res. 42(2003) 4478-4487. [116] E.A. del Rio-Chanona, F. Fiorelli, V.S. Vassiliadis, Automated structure detection for distributed process optimization, Comput. Chem. Eng. 89(2016) 135-148. [117] W. Tang, A. Allman, D.B. Pourkargar, P. Daoutidis, Optimal decomposition for distributed optimization in nonlinear model predictive control through community detection, Comput. Chem. Eng. 111(2018) 43-54. [118] A. Allman, W. Tang, P. Daoutidis, Towards a generic algorithm for identifying high-quality decompositions of optimization problems, Comput. Aided Chem. Eng. 44(2018) 943-948. [119] S.J. Wright, Coordinate descent algorithms, Math. Program. 151(2015) 3-34. [120] J. Liu, D. Muñoz de la Peña, P.D. Christofides, Distributed model predictive control of nonlinear process systems, AIChE J. 55(2009) 1171-1184. [121] B.T. Stewart, A.N. Venkat, J.B. Rawlings, S.J. Wright, G. Pannocchia, Cooperative distributed model predictive control, Syst. Control Lett. 59(2010) 460-469. [122] M. Heidarinejad, J. Liu, P.D. Christofides, Distributed model predictive control of switched nonlinear systems with scheduled mode transitions, AIChE J. 59(2013) 860-871. [123] M. Heidarinejad, J. Liu, P.D. Christofides, Economic model predictive control of nonlinear process systems using Lyapunov techniques, AIChE J. 58(2012) 855-870. [124] F. Albalawi, H. Durand, P.D. Christofides, Distributed economic model predictive control for operational safety of nonlinear processes, AIChE J. 63(2017) 3404-3418. [125] Yu. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM J. Optim. 22(2012) 341-362. [126] P. Richtárik, M. Takáć, Parallel coordinate descent methods for big data optimization, Math. Program. 156(2016) 433-484. [127] A. Beck, L. Tetruashvili, On the convergence of block coordinate descent type methods, SIAM J. Optim. 23(2013) 2037-2060. [128] Z. Lu, L. Xiao, On the complexity analysis of randomized block-coordinate descent methods, Math. Program. 152(2015) 615-642. [129] M. Hong, X. Wang, M. Razaviyayn, Z.-Q. Luo, Iteration complexity analysis of block coordinate descent methods, Math. Program. 163(2017) 85-114. [130] Yu. Nesterov, A method of solving a convex programming problem with convergence rate O(1/k2), Sov. Math. Dokl. 27(1983) 372-376. [131] O. Fercoq, P. Richtárik, Accelerated, parallel, and proximal coordinate descent, SIAM J. Optim. 25(2015) 1997-2023. [132] Z. Allen-Zhu, Z. Qu, P. Richtárik, Y. Yuan, Even faster accelerated coordinate descent using non-uniform sampling, Proc. 33rd Int. Conf. Mach. Learn. (ICML) (2016) 1110-1119. [133] Y. Xu, W. Yin, A globally convergent algorithm for nonconvex optimization based on block coordinate update, J. Sci. Comput. 72(2017) 700-734. [134] J. Liu, X. Chen, D. Muñoz de la Peña, P.D. Christofides, Sequential and iterative architectures for distributed model predictive control of nonlinear process systems, AIChE J. 56(2010) 2137-2149. [135] M. Guignard, S. Kim, Lagrangean decomposition:A model yielding stronger Lagrangean bounds, Math. Program. 39(1987) 215-228. [136] M.L. Fisher, An applications-oriented guide to Lagrangian relaxation, Interfaces 15(1985) 10-21. [137] H. Schramm, J. Zowe, A version of the bundle idea for minimizing a nonsmooth function:Conceptual idea, convergence analysis, numerical results, SIAM J. Optim. 2(1992) 121-152. [138] X. Zhao, P.B. Luh, J. Wang, Surrogate gradient algorithm for Lagrangian relaxation, J. Optim. Theory Appl. 100(1999) 699-712. [139] D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, 1982. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||