[1] B. Tanna, A. Mishra, Nutraceutical potential of seaweed polysaccharides:structure, bioactivity, safety, and toxicity, Compr. Rev. Food Sci. F. 18(2019) 817-831. [2] D.Q. Cao, Z. Wang, X.D. Hao, F.-G. Qiu, Research situation and application prospects on alginate bio-synthesized from wastewater treatment, China Water Wastewater 33(2017) 1-6. (in Chinese) [3] D.Q. Cao, X.D. Hao, Z. Wang, X. Song, E. Iritani, N. Katagiri, Membrane recovery of alginate in an aqueous solution by the addition of calcium ions:Analyses of resistance reduction and fouling mechanism, J. Membr. Sci. 535(2017) 312-321. [4] K.Y. Lee, D.J. Mooney, Alginate:properties and biomedical applications, Prog. Polym. Sci. 37(2012) 106-126. [5] M. Sepúlveda-Mardones, J.L. Campos, A. Magrí, G. Vidal, Moving forward in the use of aerobic granular sludge for municipal wastewater treatment:An overview, Rev. Environ. Sci. Biotechnol. 18(2019) 741-769. [6] J.P. van der Hoek, H. de Fooij, A. Struker, Wastewater as a resource:Strategies to recover resources from Amsterdam's wastewater, Resour. Conserv. Recy. 113(2016) 53-64. [7] M.C.M. van Loosdrecht, D. Brdjanovic, Anticipating the next century of wastewater treatment:Advances in activated sludge sewage treatment can improve its energy use and resource recovery, Science 344(2014) 1452-1453. [8] Y.M. Qin, Alginate fibres:an overview of the production processes and applications in wound management, Polym. Int. 57(2008) 171-180. [9] B.H.A. Rehm (Ed.), Alginates:Biology and Applications, Springer, Münster, 2009. [10] Y.V. Nancharaiah, G.K.K. Reddy, Aerobic granular sludge technology:Mechanisms of granulation and biotechnological applications, Bioresour. Technol. 247(2018) 1128-1143. [11] H. van der Roest, M.C.M. van Loosdrecht, E.J. Langkamp, C. Uijterlinde, Recovery and reuse of alginate from granular Nereda sludge, Water 21(4) (2015) 48. [12] Y.M. Lin, P.K. Sharma, M.C.M. van Loosdrecht, The chemical and mechanical differences between alginate-like exopolysaccharides isolated from aerobic flocculent sludge and aerobic granular sludge, Water Res. 47(2013) 57-65. [13] S. Felz, S. Al-Zuhairy, O.A. Aarstad, M.C.M. van Loosdrecht, Y.-M. Lin, Extraction of structural extracellular polymeric substances from aerobic granular sludge, J. Vis. Exp. 115(2016) 54534. [14] D.Q. Cao, X. Song, X.M. Fang, W.Y. Yang, X.D. Hao, E. Iritani, N. Katagiri, Membrane filtration-based recovery of extracellular polymer substances from excess sludge and analysis of their heavy metal ion adsorption properties, Chem. Eng. J. 354(2018) 866-874. [15] A.W. Mohammad, C.Y. Ng, Y.P. Lim, G.H. Ng, Ultrafiltration in food processing industry:review on application, membrane fouling, and fouling control, Food Bioprocess Tech. 5(2012) 1143-1156. [16] D.Q. Cao, X. Wang, Q.H. Wang, X.M. Fang, J.Y. Jin, X.D. Hao, E. Iritani, N. Katagiri, Removal of heavy metal ions by ultrafiltration with recovery of extracellular polymer substances from excess sludge, J. Membr. Sci. 606(2020) 118103. [17] D.Q. Cao, X. Song, X.D. Hao, W.Y. Yang, E. Iritani, N. Katagiri, Ca2+-aided separation of polysaccharides and proteins by microfiltration:implications for sludge processing, Sep. Purif. Technol. 202(2018) 318-325. [18] M.J. Zhang, H.C. Hong, H.J. Lin, L.G. Shen, H.Y. Yu, G.C. Ma, J.R. Chen, B.Q. Liao, Mechanistic insights into alginate fouling caused by calcium ions based on terahertz timedomain spectra analyses and DFT calculations, Water Res. 129(2018) 337-346. [19] M.J. Zhang, H.J. Lin, L.G. Shen, B.Q. Liao, X.L. Wu, R.J. Li, Effect of calcium ions on fouling properties of alginate solution and its mechanisms, J. Membr. Sci. 525(2017) 320-329. [20] J.R. Chen, M.J. Zhang, F.Q. Li, L. Qian, H.J. Lin, L.N. Yang, X.L. Wu, X.L. Zhou, Y.M. He, B. Q. Liao, Membrane fouling in a membrane bioreactor:high filtration resistance of gel layer and its underlying mechanism, Water Res. 102(2016) 82-89. [21] P.J. Flory, Thermodynamics of high polymer solutions, J. Chem. Phys. 9(1941) 660. [22] S.J. Meng, H. Winters, Y. Liu, Ultrafiltration behaviors of alginate blocks at various calcium concentrations, Water Res. 83(2015) 248-257. [23] Y.J. Xin, M.W. Bligh, A.S. Kinsela, Y. Wang, T.D. Waite, Calcium-mediated polysaccharide gel formation and breakage:impact on membrane foulant hydraulic properties, J. Membr. Sci. 475(2015) 395-405. [24] W.J.C. van de Ven, K. van't Sant, I.G.M. Pünt, A. Zwijnenburg, A.J.B. Kemperman, W.G. J. van der Meer, M. Wessling, Hollow fiber dead-end ultrafiltration:influence of ionic environment on filtration of alginates, J. Membr. Sci. 308(2008) 218-229. [25] K. Katsoufidou, S.G. Yiantsios, A.J. Karabelas, Experimental study of ultrafiltration membrane fouling by sodium alginate and flux recovery by backwashing, J. Membr. Sci. 300(2007) 137-146. [26] X.J. Xiong, H. Xu, B.P. Zhang, X.H. Wu, H.Y. Sun, D.S. Wang, Z.Y. Wang, Floc structure and membrane fouling affected by sodium alginate interaction with Al species as model organic pollutants, J. Enviro. Sci. 82(2019) 1-13. [27] Y.J. Xin, M.W. Bligh, A.S. Kinsela, T.D. Waite, Effect of iron on membrane fouling by alginate in the absence and presece of calcium, J. Membr. Sci. 497(2016) 289-299. [28] X.D. Chen, H.W. Yang, W.J. Liu, X.M. Wang, Y.F. Xie, Filterability and structure of the fouling layers of biopolymer coexisting with ferric iron in ultrafiltration membrane, J. Membr. Sci. 495(2015) 81-90. [29] B.W. Ma, W.Z. Yu, H.J. Liu, J.H. Qu, Comparison of iron (Ⅲ) and alum salt on ultrafiltration membrane fouling by alginate, Desalination 354(2014) 153-159. [30] P. Franco, E. Pessolano, R. Belvedere, A. Petrella, I.D. Marco, Supercritical impregnation of mesoglycan into calcium alginate aerogel for wound healing, J. Supercrit. Fluid. 157(2020) 104711. [31] L. Grøndahl, G. Lawrie, A. Anitha, A. Shejwalkar, Applications of alginate biopolymer in drug delivery, in:C.P. Sharma (Ed.), Biointegration of Medical Implant Materials, Woodhead Publishing, UK, 2020. [32] F. He, R. Xie, X.J. Ju, W. Wang, Z. Liu, Y.L. Chu, Recent progress in fabrication and functionalization of Ca-alginate capsules with ultrathin membranes, CIESC J. 66(2015) 2817-2823. (in Chinese) [33] A.C. Hernández-González, L.T. Téllez-Jurado, L.M. Rodríguez-Lorenzo, Alginate hydrogels for bone tissue engineering, from injectables to bioprinting:a review, Carbohyd. Polym. 229(2020) 115514. [34] K. Xu, K. Ganapathy, T. Andl, Z. Wang, J.A. Copland, R. Chakrabarti, S.J. Florczyk, 3D porous chitosan-alginate scaffold stiffness promotes differential responses in prostate cancer cell lines, Biomaterials 217(2019) 119311. [35] X.C. Yang, Z.H. Lu, H.Y. Wu, W. Li, L. Zheng, J.M. Zhao, Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering, Mat. Sci. Eng:C 83(2018) 195-201. [36] M.D. Giuseppe, N. Law, B. Webb, R.A. Macrae, L.J. Liew, T.B. Sercombe, R.J. Dilley, B.J. Doyle, Mechanical behavior of alginate-gelatin hydrogels for 3D bioprinting, J. Mech. Behave. Biomed. 79(2018) 150-157. [37] X. Yang, T. Gong, Y.H. Lu, A.Q. Li, L.J. Sun, Y.R. Guo, Compatibility of sodium alginate and konjac glucomannan and their applications in fabricating low-fat mayonnaiselike emulsion gels, Carbohyd. Polym. 229(2019) 115468. [38] B.-B. Lee, B.R. Bhandari, T. Howes, Gelation of an alginate film via spraying of calcium chloride droplets, Chem. Eng. Sci. 183(2018) 1-12. [39] G. Li, G.P. Zhang, R. Sun, C.P. Wong, Mechanical strengthened alginate/polyacrylamide hydrogel crosslinked by barium and ferric dual ions, J. Mater. Sci. 52(2017) 8538-8545. [40] N. Chiaoprakobkij, S. Seetabhawang, N. Sanchavanakit, M. Phisalaphong, Fabrication and characterization of novel bacterial cellulose/alginate/gelatin biocomposite film, J. Biomat. Sci-Polym. E. 30(2019) 961-982. [41] J.W. Li, J.W. Ma, S.J. Chen, J.M. He, Y.D. Huang, Characterization of calcium alginate/deacetylated konjac glucomannan blend films prepared by Ca2+ crosslinking and deacetylation, Food Hydrocolloid. 82(2018) 363-369. [42] X. Yuan, W.C. Nie, C. Xu, X.H. Wang, Q. Xiao, F. Song, X.L. Wang, From fragility to flexibility:construction of hydrogel bridges toward a flexible multifunctional freestanding CaCO3 film, Adv. Funct. Mater. 28(2017) 1704956. [43] K.Y. Zhao, X.X. Zhang, J.F. Wei, J.J. Li, X.Y. Zhou, D. Liu, Z.B. Liu, J.X. Li, Calcium alginate hydrogel filtration membrane with excellent anti-fouling property and controlled separation performance, J. Membr. Sci. 492(2015) 536-546. [44] V. Jost, M. Reinelt, Effect of Ca2+ induced crosslinking on the mechanical and barrier properties of cast alginate films, J. Appl. Polym. Sci. 135(2018) 45754. [45] Y.M. Lin, K.G.J. Nierop, E. Girbal-Neuhauser, M. Adriaanse, M.C.M. van Loosdrecht, Sustainable polysaccharide-based biomaterial recovered from waste aerobic granular sludge as a surface coating material, Sust. Mat. Technol. 4(2015) 24-29. [46] Y.C. Dong, Y.N. Cao, W.J. Dong, Photocatalysis effect of ferric alginate gel beads on oxidative degradation of azo dyes, Acta Energiae Solaris Sinica 30(2009) 1100-1105. (in Chinese). [47] D.Q. Cao, E. Iritani, N. Katagiri, Properties of filter cake formed during dead-end microfiltration of O/W emulsion, J. Chem. Eng. Jpn 46(2013) 593-600. [48] E. Iritani, N. Katagiri, Y. Takaishi, S. Kanetake, Determination of pressure dependence of permeability characteristics from single constant pressure filtration test, J. Chem. Eng. Jpn 44(2011) 14-23. [49] A.N. Pham, A.L. Rose, A.J. Feitz, T.D. Waite, Kinetics of Fe (Ⅲ) precipitation in aqueous solutions at pH 6.0-9.5 and 25℃, Geochim. Cosmochim. Ac. 70(2006) 640-650. [50] M.W. Bligh, T.D. Waite, Formation, aggregation and reactivity of amorphous ferric oxyhydroxides on dissociation of Fe (Ⅲ)-organic complexes in dilute aqueous suspensions, Geochim. Cosmochim. Ac. 74(2010) 5746-5762. [51] K.J. Sreeram, H.Y. Shrivastava, B.U. Nair, Studies on the nature of interaction of iron (Ⅲ) with alginates, BBA-Gen. Subjects 1670(2004) 121-125. [52] P. Sipos, O. Berkesi, E. Tombácz, T.G.S. Pierre, J. Webb, Formation of spherical iron (Ⅲ) oxyhydroxide nanoparticles sterically stabilized by chitosan in aqueous solutions, J. Inorg. Biochem. 95(2003) 55-63. [53] F. Jones, H. Cölfen, M. Antonietti, Iron oxyhydroxide colloids stabilized with polysaccharides, Colloid Polym. Sci. 278(2000) 491-501. [54] I. Donati, F. Asaro, S. Paoletti, Experimental evidence of counterion affinity in alginates:the case of nongelling ion Mg2+, J. Phys. Chem. B 113(2009) 12877-12886. [55] G.T. Grant, E.R. Morris, D.A. Rees, P.J.C. Smith, D. Thom, Biological interactions between polysaccharides and divalent cations:the egg-box model, FEBS Lett. 32(1973) 195-198. [56] J.E. Gregor, E. Fenton, G. Brokenshire, P. van den Brink, B. O'Sullivan, Interactions of calcium and aluminium ions with alginate, Water Res. 30(1996) 1319-1324. |