[1] A. Cavaliere, M. de Joannon, Mild combustion, Prog. Energy Combust. Sci. 30(2004) 329-366. [2] J. Wünning, J. Wünning, Flameless oxidation to reduce thermal NO-formation, Prog. Energy Combust. Sci. 23(1997) 81-94. [3] R. Weber, S. Orsino, N. Lallemant, A. Verlaan, Combustion of natural gas with high-temperature air and large quantities of flue gas, Proc. Combust. Inst. 28(2000) 1315-1321. [4] Y. Tu, K. Su, H. Liu, Z. Wang, Y. Xie, C. Zheng, W. Li, MILD combustion of natural gas using low preheating temperature air in an industrial furnace, Fuel Process. Technol. 156(2017) 72-81. [5] P. Li, F. Wang, Y. Tu, Z. Mei, J. Zhang, Y. Zheng, H. Liu, Z. Liu, J. Mi, C. Zheng, Moderate or intense low-oxygen dilution oxy-combustion characteristics of light oil and pulverized coal in a pilot-scale furnace, Energy Fuels. 28(2014) 1524-1535. [6] G. Szegö, B. Dally, G. Nathan, Scaling of NOX emissions from a laboratory-scale mild combustion furnace, Combust Flame 154(2008) 281-295. [7] M. Tamura, S. Watanabe, K. Komaba, K. Okazaki, Combustion behaviour of pulverised coal in high temperature air condition for utility boilers, Appl. Therm. Eng. 75(2015) 445-450. [8] N. Schaffel, M. Mancini, A. Szle, R. Weber, Mathematical modeling of MILD combustion of pulverized coal, Combust. Flame 156(2009) 1771-1784. [9] A. Peters, R. Weber, Mathematical modeling of a 2. 25 MWt swirling natural Gas flame. Part 1:Eddy break-up concept for turbulent combustion; probability density function approach for nitric oxide formation, Combust. Sci. Technol. 110(1995) 67-101. [10] A.A. Peters, R. Weber, Mathematical modeling of a 2.4 MW swirling pulverized coal flame, Combust. Sci. Technol. 122(1997) 131-182. [11] M. Saha, B.B. Dally, P.R. Medwell, E.M. Cleary, Moderate or intense low oxygen dilution (MILD) combustion characteristics of pulverized coal in a selfrecuperative furnace, Energy Fuels 28(2014) 6046-6057. [12] C.K. Law, A. Makino, T. Lu, On the off-stoichiometric peaking of adiabatic flame temperature, Combust. Flame 145(2006) 808-819. [13] N. Rizk, H. Mongia, Low NOX rich-lean combustion concept application, 27th Joint Propulsion Conference, Sacramento, CA, USA, 1991. [14] L. Zhengqi, Y. LongBin, Q. Penghua, S. Rui, C. LiZhe, S. ShaoZeng, Experimental study of the combustion efficiency and formation of NOX in an industrial pulverized coal combustor, Int. J. Energy Res. 28(2004) 511-520. [15] D. Bradley, P. Gaskell, X. Gu, M. Lawes, M. Scott, Premixed turbulent flame instability and NO formation in a lean-burn swirl burner, Combust. Flame. 115(1998) 515-538. [16] X. Zhang, J. Zhou, S. Sun, R. Sun, M. Qin, Numerical investigation of low NOX combustion strategies in tangentially-fired coal boilers, Fuel 142(2015) 215-221. [17] Q. Zha, D. Li, D. Che, Numerical evaluation of heat transfer and NOX emissions under deep-air-staging conditions within a 600 MWe tangentially fired pulverized-coal boiler, Appl. Therm. Eng. 116(2017) 170-181. [18] O. Kurata, N. Iki, T. Inoue, T. Matsunuma, T. Tsujimura, H. Furutani, M. Kawano, K. Arai, E.C. Okafor, A. Hayakawa, Development of a wide range-operable, richlean low-NOX combustor for NH3 fuel gas-turbine power generation, Proc. Combust. Inst. 37(2019) 4587-4595. [19] F. Bolaños, D. Winkler, F. Piringer, T. Griffin, R. Bombach, J. Mantzaras, Study of a rich/lean staged combustion concept for hydrogen at gas turbine relevant conditions, ASME Turbo Expo 2013:Turbine Technical Conference and Exposition:American Society of Mechanical Engineers Digital Collection, San Antonio, Texas, USA, 2013. [20] M. Xu, Y. Tu, G. Zeng, Q. Wang, A. Zhou, W. Yang, Numerical study of further NOX emission reduction for coal MILD combustion by combining fuel-rich/lean technology, Int. J. Energy Res. 43(2019) 8492-8508. [21] P. Li, J. Mi, B.B. Dally, R.A. Craig, F. Wang, Premixed moderate or intense lowoxygen dilution (MILD) combustion from a single jet burner in a laboratoryscale furnace, Energy Fuels 25(2011) 2782-2793. [22] P. Li, F. Wang, J. Mi, B. Dally, Z. Mei, MILD combustion under different premixing patterns and characteristics of the reaction regime, Energy Fuels 28(2014) 2211-2226. [23] S. Cao, C. Zou, Q. Han, Y. Liu, D. Wu, C. Zheng, Numerical and experimental studies of NO formation mechanisms under methane moderate or intense low-oxygen dilution (MILD) combustion without heated air, Energy Fuels 29(2015) 1987-1996. [24] ANSYS Fluent 18.2 User's Manual. ANSYS Canonsburg, PA, 2017. [25] F.C. Christo, B.B. Dally, Modeling turbulent reacting jets issuing into a hot and diluted coflow, Combust. Flame 142(2005) 117-129. [26] A. De, E. Oldenhof, P. Sathiah, D. Roekaerts, Numerical simulation of delft-jetin-hot-coflow (djhc) flames using the eddy dissipation concept model for turbulence-chemistry interaction, Flow, Turbul. Combust. 87(2011) 537-567. [27] M. Evans, P. Medwell, Z.J.C.S. Tian, Modeling lifted jet flames in a heated coflow using an optimized eddy dissipation concept model, Combust. Sci. Technol. 187(2015) 1093-1109. [28] Y. Tu, W. Yang, H. Liu, A refined global reaction mechanism for gently preheated MILD combustion of methane, Energy Fuels 31(2017) 10144-10157. [29] J.P. Kim, U. Schnell, G. Scheffknecht, Comparison of different global reaction mechanisms for mild combustion of natural gas, Combust. Sci. Technol. 180(2008) 565-592. [30] L. Wang, Z. Liu, S. Chen, C. Zheng, Comparison of different global combustion mechanisms under hot and diluted oxidation conditions, Combust. Sci. Technol. 184(2012) 259-276. [31] G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, et al. GRI-Mech 3.0, 1999, http://www.me.berkeley.edu/gri_mech. [32] B. Jiang, H. Liang, G. Huang, L. Xingang, Study on NOX formation in CH4/Air jet combustion, Chin. J. Chem. Eng. 14(2006) 723-728. [33] Y. Liu, J. Cheng, C. Zou, L. Cai, Y. He, C. Zheng, Experimental and numerical study on the CO formation mechanism in methane MILD combustion without preheated air, Fuel 192(2017) 140-148. [34] Y. Tu, M. Xu, D. Zhou, Q. Wang, W. Yang, H. Liu, CFD and kinetic modelling study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O atmospheres, Appl. Energy 240(2019) 1003-1013. [35] M. Jianchun, L. Pengfei, C. Zheng, Numerical simulation of flameless premixed combustion with an annular nozzle in a recuperative furnace, Chin. J. Chem. Eng. 18(2010) 10-17. [36] W. Hawthorne, D. Weddell, H. Hottel, Mixing and combustion in turbulent gas jets, in:Symposium on Combustion and Flame, and Explosion Phenomena, Elsevier, Amsterdam (1948) 266-288. [37] S.R. Turns, F.H. Myhr, R.V. Bandaru, E.R. Maund, Oxides of nitrogen emissions from turbulent jet flames:part II-fuel dilution and partial premixing effects, Combust. Flame 93(1993) 255-269. [38] Z. Mei, J. Mi, F. Wang, P. Li, J. Zhang, Chemical flame length of a methane jet into oxidant stream, Flow, Turbul. Combust. 94(2015) 767-794. [39] J.S. Newman, C. Wieczorek, Chemical flame heights, Fire Saf. J. 39(2004) 375-382. [40] W. Yang, W. Blasiak, Chemical flame length and volume in liquified propane gas combustion using high-temperature and low-oxygen-concentration oxidizer, Energy Fuels 18(2004) 1329-1335. [41] R. Stephen, An Introduction to Combustion:Concepts and Applications, McGraw-hill, New York, USA, 2000. [42] K.A. Khazaei, A.A. Hamidi, M. Rahimi, Numerical investigation of fuel dilution effects on the performance of the conventional and the highly preheated and diluted air combustion furnaces, Chin. J. Chem. Eng. 17(2009) 711-726. [43] S. Xu, Y. Tu, P. Huang, C. Luan, Z. Wang, B. Shi, H. Liu, Z. Liu, Effects of wall temperature on methane MILD combustion and heat transfer behaviors with non-preheated air, Appl. Therm. Eng. 174(2020) 115282. [44] C. Luan, S. Xu, B. Shi, Y. Tu, H. Liu, P. Li, Z. Liu, Re-recognition of MILD combustion regime by initial conditions of Tin and XO2 for methane in a nonadiabatic well-stirred reactor, Energy Fuels 34(2020) 2391-2404. |