Chinese Journal of Chemical Engineering ›› 2021, Vol. 33 ›› Issue (5): 181-189.DOI: 10.1016/j.cjche.2020.09.045
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Raza Ullah, Jihong Sun, Anadil Gul, Tallat Munir, Xia Wu
Received:
2020-03-13
Revised:
2020-08-11
Online:
2021-08-19
Published:
2021-05-28
Contact:
Jihong Sun, Xia Wu
Supported by:
Raza Ullah, Jihong Sun, Anadil Gul, Tallat Munir, Xia Wu
通讯作者:
Jihong Sun, Xia Wu
基金资助:
Raza Ullah, Jihong Sun, Anadil Gul, Tallat Munir, Xia Wu. Evaluations of physico-chemical properties of TiO2/clinoptilolite synthesized via three methods on photocatalytic degradation of crystal violet[J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 181-189.
Raza Ullah, Jihong Sun, Anadil Gul, Tallat Munir, Xia Wu. Evaluations of physico-chemical properties of TiO2/clinoptilolite synthesized via three methods on photocatalytic degradation of crystal violet[J]. 中国化学工程学报, 2021, 33(5): 181-189.
[1] L. Soares, A. Alves, Photocatalytic properties of TiO2 and TiO2/WO3 films applied as semiconductors in heterogeneous photocatalysis, Mater. Lett. 211(2018) 339-342. [2] V. Scuderi, M. Zimbone, M. Miritello, G. Nicotra, G. Impellizzeri, V. Privitera, Optical and photocatalytic properties of TiO2 nanoplumes, Beilstein. J. Nanotechnol. 8(2017) 190-195. [3] Y. Chen, C. Shen, J. Wang, G. Xiao, G. Luo, Green synthesis of Ag-TiO2 supported on porous glass with enhanced photocatalytic performance for oxidative desulfurization and removal of dyes under visible light, ACS Sustain. Chem. Eng. 6(2018) 13276-13286. [4] B. Paul, W.N. Martens, R.L. Frost, Immobilised anatase on clay mineral particles as a photocatalyst for herbicides degradation, Appl. Clay Sci. 57(2012) 49-54. [5] H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures, Water Res. 79(2015) 128-146. [6] S. Zhang, J. Xu, J. Hu, C. Cui, H. Liu, Interfacial growth of TiO2-rGO composite by pickering emulsion for photocatalytic degradation, Langmuir 33(2017) 5015-5024. [7] A. Nezamzadeh-Ejhieh, M. Khorsandi, Photodecolorization of Eriochrome Black T using NiS-P zeolite as a heterogeneous catalyst, J. Hazard. Mater. 176(2010) 629-637. [8] R.A. Sene, S. Sharifnia, G. Moradi, On the impact evaluation of various chemical treatments of support on the photocatalytic properties and hydrogen evolution of sonochemically synthesized TiO2/Clinoptilolite, Int. J. Hydrog. Energy 43(2018) 695-707. [9] M. Rosales, T. Zoltan, C. Yadarola, E. Mosquera, F. Gracia, A. Garcia, The influence of the morphology of 1D TiO2 nanostructures on photogeneration of reactive oxygen species and enhanced photocatalytic activity, J. Mol. Liq. 281(2019) 59-69. [10] M. Sayed, A. Arooj, N.S. Shah, J.A. Khan, L.A. Shah, F. Rehman, H. Arandiyan, A. M. Khan, A.R. Khan, Narrowing the band gap of TiO2 by co-doping with Mn2+ and Co2+ for efficient photocatalytic degradation of enoxacin and its additional peroxidase like activity: A mechanistic approach, J. Mol. Liq. 272(2018) 403-412. [11] M. Li, Z. Xing, J. Jiang, Z. Li, J. Yin, J. Kuang, S. Tan, Q. Zhu, W. Zhou, Surface plasmon resonance-enhanced visible-light-driven photocatalysis by Ag nanoparticles decorated S-TiO2-x nanorods, J. Taiwan Inst. Chem. Eng. 82(2018) 198-204. [12] P.K. Sharma, M.A.L. Cortes, J.W. Hamilton, Y. Han, J.A. Byrne, M. Nolan, Surface modification of TiO2 with copper clusters for band gap narrowing, Catal. Today 321(2019) 9-17. [13] S. Fukugaichi, T. Henmi, N. Matsue, Facile synthesis of TiO2-zeolite composite and its enhanced photocatalytic activity, Catal. Lett. 143(2013) 1255-1259. [14] X. Liu, Y. Liu, S. Lu, W. Guo, B. Xi, Performance and mechanism into TiO2/ Zeolite composites for sulfadiazine adsorption and photodegradation, Chem. Eng. J. 350(2018) 131-147. [15] D. Kanakaraju, J. Kockler, C.A. Motti, B.D. Glass, M. Oelgemoller, Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin, Appl. Catal. B: Environ. 166(2015) 45-55. [16] K. Zhou, X.Y. Hu, B.Y. Chen, C.-C. Hsueh, Q. Zhang, J. Wang, Y.J. Lin, C.T. Chang, Synthesized TiO2/ZSM-5 composites used for the photocatalytic degradation of azo dye: Intermediates, reaction pathway, mechanism and bio-toxicity, Appl. Surf. Sci. 383(2016) 300-309. [17] G. Zhang, Z. Sun, X. Hu, A. Song, S. Zheng, Synthesis of BiOCl/TiO2-zeolite composite with enhanced visible light photoactivity, J. Taiwan Inst. Chem. Eng. 81(2017) 435-444. [18] J. Behin, E. Ghadamnan, H. Kazemian, Recent advances in the science and technology of natural zeolites in Iran, Clay Miner. 54(2019) 131-144. [19] S. Liu, M. Lim, R. Amal, TiO2-coated natural zeolite: rapid humic acid adsorption and effective photocatalytic regeneration, Chem. Eng. Sci. 105(2014) 46-52. [20] M. Trujillo, D. Hirales, M. Rincon, J. Hinojosa, G. Leyva, F. Castillon, TiO2/clinoptilolite composites for photocatalytic degradation of anionic and cationic contaminants, J. Mater. Sci. 48(2013) 6778-6785. [21] H. Zabihi-Mobarakeh, A. Nezamzadeh-Ejhieh, Application of supported TiO2 onto Iranian clinoptilolite nanoparticles in the photodegradation of mixture of aniline and 2, 4-dinitroaniline aqueous solution, J. Ind. Eng. Chem. 26(2015) 315-321. [22] G. Zhang, A. Song, Y. Duan, S. Zheng, Enhanced photocatalytic activity of TiO2/ zeolite composite for abatement of pollutants, Micropor. Mesopor. Mater. 255(2018) 61-68. [23] T. Kamegawa, R. Kido, D. Yamahana, H. Yamashita, Design of TiO2-zeolite composites with enhanced photocatalytic performances under irradiation of UV and visible light, Micropor. Mesopor. Mater. 165(2013) 142-147. [24] Z. Mehrabadi, H. Faghihian, Elimination of highly consumed herbicide; 2, 4-dichlorophenoxyacetic acid from aqueous solution by TiO2 impregnated clinoptilolite, study of degradation pathway, Spectrochim. Acta A Mol. Biomol. Spectrosc. 204(2018) 248-259. [25] A. Nezamzadeh-Ejhieh, Z. Nematollahi, Surfactant modified zeolite carbon paste electrode (SMZ-CPE) as a nitrate selective electrode, Electrochim. Acta. 56(2011) 8334-8341. [26] R. Ullah, C. Liu, H. Panezai, A. Gul, J. Sun, X. Wu, Controlled crystal phase and particle size of loaded-TiO2 using clinoptilolite as support via hydrothermal method for degradation of crystal violet dye in aqueous solution, Arab. J. Chem. 13(2020) 4092-4101. [27] S. Khodadoust, A. Sheini, N. Armand, Photocatalytic degradation of monoethanolamine in wastewater using nanosized TiO2 loaded on clinoptilolite, Spectrochim. Acta A Mol. Biomol. Spectrosc. 92(2012) 91-95. [28] Z. Mehrabadi, H. Faghihian, Comparative photocatalytic performance of TiO2 supported on clinoptilolite and TiO2/Salicylaldehyde-NH2-MIL-101(Cr) for degradation of pharmaceutical pollutant atenolol under UV and visible irradiations, J. Photochem. Photobiol. A Chem. 356(2018) 102-111. [29] C. Bandas, C. Orha, C. Misca, C. Lazau, P. Sfirloaga, S. Olariu, Photocatalytical inactivation of Enterococcus faecalis from water using functional materials based on natural zeolite and titanium dioxide, Chin. J. Chem. Eng. 22(2014) 38-43. [30] R.A. Sene, G. Moradi, S. Sharifnia, Sono-dispersion of TiO2 nanoparticles over clinoptilolite used in photocatalytic hydrogen production: Effect of ultrasound irradiation during conventional synthesis methods, Ultrason. Sonochem. 37(2017) 490-501. [31] C. Wang, H. Shi, Y. Li, Synthesis and characterization of natural zeolite supported Cr-doped TiO2 photocatalysts, Appl. Surf. Sci. 258(2012) 4328-4333. [32] Y. Hendrix, A. Lazaro, Q. Yu, H. Brouwers, Influence of synthesis conditions on the properties of photocatalytic titania-silica composites, J. Photochem. Photobiol. A Chem. 371(2019) 25-32. [33] A. Asadi, R. Akbarzadeh, A. Eslami, T.C. Jen, P.O. Oviroh, Effect of synthesis method on NS-TiO2 photocatalytic performance, Energy Procedia 158(2019) 4542-4547. [34] I. Jansson, S. Suarez, F. García-Garcia, B. Sanchez, ZSM-5/TiO2 hybrid photocatalysts: Influence of the preparation method and synergistic effect, Top. Catal. 60(2017) 1171-1182. [35] S. Peng, R. Ullah, S. Bai, J. Sun, X. Wu, Hydrothermal synthesis of clinoptilolite and its ion exchange performance for CH4/N2 separation, Acta Pet. Sin. (Pet. Process. Sect.) 35(2019) 343-358. [36] R. Ullah, J. Sun, A. Gul, S. Bai, One-step hydrothermal synthesis of TiO2-supported clinoptilolite: An integrated photocatalytic adsorbent for removal of crystal violet dye from aqueous media, J. Environ. Chem. Eng. 8(2020) 103852. [37] T. Ouyang, C. Zhai, J. Sun, H. Panezai, S. Bai, Nanosol precursor as structural promoter for clinoptilolite via hydrothermal synthesis and resulting effects on selective adsorption of CH4 and N2, Micropor. Mesopor. Mater. 294(2020) 109913. [38] N. Omrani, A. Nezamzadeh-Ejhieh, Focus on scavengers’ effects and GC-MASS analysis of photodegradation intermediates of sulfasalazine by Cu2O/CdS nanocomposite, Sep. Purif. Technol. 235(2020) 116228. [39] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods 9(2012) 671-675. [40] D.W. Breck, Zeolite molecular sieves: Structure, chemistry and use, Anal. Chimica Acta 75(2) (1975) 493. [41] F. Rahmani, M. Haghighi, M. Amini, The beneficial utilization of natural zeolite in preparation of Cr/clinoptilolite nanocatalyst used in CO2-oxidative dehydrogenation of ethane to ethylene, J. Ind. Eng. Chem. 31(2015) 142-155. [42] A. Nezamzadeh-Ejhieh, A. Shirzadi, Enhancement of the photocatalytic activity of ferrous oxide by doping onto the nano-clinoptilolite particles towards photodegradation of tetracycline, Chemosphere 107(2014) 136-144. [43] N. Davari, M. Farhadian, A.R.S. Nazar, M. Homayoonfal, Degradation of diphenhydramine by the photocatalysts of ZnO/Fe2O3 and TiO2/Fe2O3 based on clinoptilolite: Structural and operational comparison, J. Environ. Chem. Eng. 5(2017) 5707-5720. [44] S. Bagheri, Z.A. Mohd Hir, A. Termeh Yousefi, S.B. Abd Hamid, Photocatalytic performance of activated carbon-supported mesoporous titanium dioxide, Desalin. Water Treat. 57(2016) 10859-10865. [45] A. Nezamzadeh-Ejhieh, M. Bahrami, Investigation of the photocatalytic activity of supported ZnO-TiO2 on clinoptilolite nano-particles towards photodegradation of wastewater-contained phenol, Desalin. Water Treat. 55(2015) 1096-1104. [46] M. Karimi-Shamsabadi, A. Nezamzadeh-Ejhieh, Comparative study on the increased photoactivity of coupled and supported manganese-silver oxides onto a natural zeolite nano-particles, J. Mol. Catal. A: Chem. 418(2016) 103-114. [47] A. Nezamzadeh-Ejhieh, Z. Banan, A comparison between the efficiency of CdS nanoparticles/zeolite A and CdO/zeolite A as catalysts in photodecolorization of crystal violet, Desalination 279(2011) 146-151. [48] M. Borandegi, A. Nezamzadeh-Ejhieh, Enhanced removal efficiency of clinoptilolite nano-particles toward Co (II) from aqueous solution by modification with glutamic acid, Colloid Surf. A Physicochem. Eng. Asp. 479(2015) 35-45. [49] M. Anari-Anaraki, A. Nezamzadeh-Ejhieh, Modification of clinoptilolite nanoparticles by a cationic surfactant and dithizone for removal of Pb (II) from aqueous solution, J. Colloid Interface Sci. 440(2015) 272-281. [50] Z. Shams-Ghahfarokhi, A. Nezamzadeh-Ejhieh, As-synthesized ZSM-5 zeolite as a suitable support for increasing the photoactivity of semiconductors in a typical photodegradation process, Mater. Sci. Semicond. Process 39(2015) 265-275. |
[1] | Baoyu Liu, Feng Xiong, Jianwen Zhang, Manna Wang, Yi Huang, Yanxiong Fang, Jinxiang Dong. Enhanced ortho-selective t–butylation of phenol over sulfonic acid functionalized mesopore MTW zeolites [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 1-7. |
[2] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[3] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 53-60. |
[4] | Ming Liu, Ying Li, Rui Wang, Guoqiang Shao, Pengpeng Lv, Jun Li, Qingshan Zhu. Uniform deposition of ultra-thin TiO2 film on mica substrate by atmospheric pressure chemical vapor deposition: Effect of precursor concentration [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 99-107. |
[5] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[6] | Xia Miao, Xiaofan Pang, Shiyu Li, Haoguang Wei, Jianhao Yin, Xiangming Kong. Mechanical strength and the degradation mechanism of metakaolin based geopolymer mixed with ordinary Portland cement and cured at high temperature and high relative humidity [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 118-130. |
[7] | Xiaolin Pan, Mengyuan Gao, Yun Wang, Yanping He, Tian Si, Yanlin Sun. Poly(lactic acid)-aspirin microspheres prepared via the traditional and improved solvent evaporation methods and its application performances [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 194-204. |
[8] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 205-211. |
[9] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[10] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 242-252. |
[11] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[12] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[13] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[14] | Mingzhi Li, Zhikai Liu, Wang Yao, Chao Xu, Yangping Yu, Mei Yang, Guangwen Chen. Ultrasonic cavitation-enabled microfluidic approach toward the continuous synthesis of cesium lead halide perovskite nanocrystals [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 32-41. |
[15] | Haixiang Liu, Jun Zhang, Chunlei Dong, Gang Zhu, Guanben Du, Shuduan Deng. Synthesis, performance and structure characterization of glyoxal-monomethylolurea-melamine (G-MMU-M) co-condensed resin [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 92-104. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 294
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 174
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||