[1] R.S. Ahima, Global warming threatens human thermoregulation and survival, J. Clin. Invest. 130(2) (2020) 559-561. [2] C. Wang, M. Luo, L.Z. Zhou, H.Y. Zhang, Sulfur transformation behavior of inorganic sulfur-containing compounds in chemical looping combustion, Energ Fuel 34(3) (2020) 3969-3975. [3] X.Y. Wang, H.B. Zhao, M.Z. Su, A comparative process simulation study of CaCu looping involving post-combustion CO2 capture, Chin. J. Chem. Eng. 28(9) (2020) 2382-2390. [4] S. Wang, S. Zhao, B.B. Uzoejinwa, A.Q. Zheng, Q.Y. Wang, J. Huang, A.F. Abomohra, A state-of-the-art review on dual purpose seaweeds utilization for wastewater treatment and crude bio-oil production, Energ Convers. Manage. 222(2020) 113253. [5] L. Zeng, Z. Cheng, J.A. Fan, L.S. Fan, J.L. Gong, Metal oxide redox chemistry for chemical looping processes, Nat. Rev. Chem. 2(2018) 349-364. [6] X. Zhu, Q. Imtiaz, F. Donat, C.R. Müller, F.X. Li, Chemical looping beyond combustion-a perspective, Energ Environ. Sci. 13(2020) 772-804. [7] M. Taylor, The current and future state of CCS and its deployment around the world, Greenh Gases 2(6) (2012) 399-401. [8] C. Kunze, H. Spliethoff, Assessment of oxy-fuel, pre- and post-combustionbased carbon capture for future IGCC plants, Appl. Energ. 94(2012) 109-116. [9] Y. Wang, L. Zhao, A. Ottoa, M. Robinius, D. Stolten, A review of post-combustion CO2 capture technologies from coal-fired power plants, Energy Procedia 114(2017) 650-665. [10] J. Davison, L. Mancuso, N. Ferrari, Costs of CO2 capture technologies in coal fired power and hydrogen plants, Energy Procedia 63(2014) 7598-7607. [11] J. Li, H.D. Zhang, Z.P. Gao, J. Fu, W.Y. Ao, J.J. Dai, CO capture with chemical looping combustion of gaseous fuels:An overview, Energ Fuel 31(4) (2017) 3475-3524. [12] Z. Ma, R. Xiao, L.Y. Chen, Redox reaction induced morphology and microstructure evolution of iron oxide in chemical looping process, Energ. Convers. Manage. 168(2018) 288-295. [13] Y.C. Feng, N.N. Wang, X. Guo, S.X. Zhang, Characteristics of dopant distribution and surface oxygen vacancy formation for modified Fe2O3 in chemical looping combustion, Fuel 276(2020) 117942. [14] H.M. Wang, X.M. Dou, A. Veksha, W. Liu, A. Giannis, L.Y. Ge, T.T. Lim, G. Lisak, Barium aluminate improved iron ore for the chemical looping combustion of syngas, Appl. Energ. 272(2020) 115236. [15] Z. Ma, S. Zhang, Y.G. Lu, Phase segregation mechanism of NiFe2O4 oxygen carrier in chemical looping process, Int. J. Energ. Res. 45(2) (2020) 3305-3314. [16] J.H. Bao, L.Y. Chen, F. Liu, Z. Fan, H.S. Nikolic, K.L. Liu, Evaluating the effect of inert supports and alkali sodium on the performance of red mud oxygen carrier in chemical looping combustion, Ind. Eng. Chem. Res. 55(29) (2016) 8046-8057. [17] L.Y. Chen, J.H. Bao, L. Kong, M. Combs, H.S. Nikolic, Z. Fan, K.L. Liu, Activation of ilmenite as an oxygen carrier for solid-fueled chemical looping combustion, Appl. Energ. 197(2017) 40-51. [18] H.J. Ge, L.H. Shen, T. Song, S.Y. Yin, Study on the migration characteristics of sodium and chlorine in chemical looping process of zhundong coal with hematite oxygen carrier, Energ. Fuel 33(2) (2019) 1489-1500. [19] G.Q. Wei, W.N. Zhao, J.G. Meng, J. Feng, H.B. Li, Hydrogen production from vegetable oil via a chemical looping process with hematite oxygen carriers, J. Clean. Prod. 200(2018) 588-597. [20] P. Knutsson, C.J. Linderholm, Characterization of ilmenite used as oxygen carrier in a 100 kW chemical-looping, combustor for solid fuels, Appl. Energ. 157(2015) 368-373. [21] J.Y. Yuan, Y.N. Zhao, H.W. Xu, C.Q. Lu, K.Z. Li,[CLCG] layered mg-Al spinel supported Ce-Fe-Zr-O oxygen carriers for chemical looping reforming, Chin. J. Chem. Eng. 28(10) (2020) 2668-2676. [22] Z. Ma, S. Zhang, R. Xiao, J.F. Wang, Inhibited phase segregation to enhance the redox performance of NiFe2O4 via CeO2 modification in the chemical looping process, Energ. Fuel 34(5) (2020) 6178-6185. [23] X.N. Huang, J.W. Wu, M.F. Wang, X.Q. Ma, Z.F. Hu, Syngas production by chemical looping gasification of rice husk using Fe-based oxygen carrier, J. Energy Inst. 93(4) (2020) 1261-1270. [24] G.X. Deng, K.Z. Li, G.F. Zhang, Z.H. Gu, X. Zhu, Y.G. Wei, H. Wang, Enhanced performance of red mud-based oxygen carriers by CuO for chemical looping combustion of methane, Appl. Energ. 253(2019) 113534. [25] G.X. Deng, K.Z. Li, Z.H. Gu, X. Zhu, Y.G. Wei, X.M. Cheng, H. Wang, Synergy effects of combined red muds as oxygen carriers for chemical looping combustion of methane, Chem. Eng. J. 341(2018) 588-600. [26] Y.N. Wang, X. Tian, H.B. Zhao, K.L. Liu, The use of a low-cost oxygen carrier prepared from red mud and copper ore for in situ gasification chemical looping combustion of coal, Fuel Process. Technol. 205(2020) 106460. [27] Z.B. Deng, Z. Huang, F. He, A. Zheng, G. Wei, J. Meng, Z.L. Zhao, H.B. Li, Evaluation of calcined copper slag as an oxygen carrier for chemical looping gasification of sewage sludge, Int. J. Hydrogen Energ. 44(33) (2019) 17823-17834. [28] S.W. Luo, L. Zeng, L.S. Fan, Chemical looping technology:Oxygen carrier characteristics, Annu. Rev. Chem. Biomol. 6(2015) 53-75. [29] Q. Imtiaz, D. Hosseini, C.R. Müller, Review of oxygen carriers for chemical looping with oxygen uncoupling (CLOU):Thermodynamics, material development, and synthesis, Energy Technol.-Ger. 1(11) (2013) 633-647. [30] H. Leion, A. Lyngfelt, M. Johansson, E. Jerndal, T. Mattisson, The use of ilmenite as an oxygen carrier in chemical-looping combustion, Chem. Eng. Res. Des. 86(9) (2008) 1017-1026. [31] K. Miya, J. Otomo, Improvements in reaction kinetics and stability of ilmenite as oxygen carrier by surface modification with calcium titanate in redox cycles of chemical-looping systems, Chem. Eng. J. 327(2017) 257-267. [32] M. Rydén, M. Johansson, E. Cleverstam, A. Lyngfelt, T. Mattisson, Ilmenite with addition of NiO as oxygen carrier for chemical-looping combustion, Fuel 89(11) (2010) 3523-3533. [33] A. Cuadrat, A. Abad, J. Adánez, L.F. Diego, F.G. Labiano, P. Gayán, Behavior of ilmenite as oxygen carrier in chemical-looping combustion, Fuel Process. Technol. 94(1) (2012) 101-112. [34] S. Zhang, S. Rajendran, S. Henderson, D. Zeng, R. Xiao, S. Bhattachary, Use of pyrite cinder as an iron-based oxygen carrier in coal-fueled chemical looping combustion, Energ. Fuel 29(4) (2015) 2645-2655. [35] S. Zhang, R. Xiao, Comparison of pyrite cinder with synthetic and natural ironbased oxygen carriers in coal-fueled chemical-looping combustion, Greenh Gases 8(2018) 106-119. [36] Z. Ma, S. Zhang, R. Xiao, Redox performance of pyrite cinder in methane chemical looping combustion, Chem. Eng. J. 395(2020) 125097. [37] L. Qina, M.Q. Guo, Y. Liua, Z. Cheng, J.A. Fan, L.S. Fan, Enhanced methane conversion in chemical looping partial oxidation systems using a copper doping modification, Appl. Catal. B-Environ. 235(2018) 143-149. [38] X. Zhu, M.Y. Zhang, K.Z. Li, Y.G. Wei, Y.N. Zheng, J.H. Hu, H. Wang, Chemicallooping water splitting over ceria-modified iron oxide:Performance evolution and element migration during redox cycling, Chem. Eng. Sci. 179(2018) 92-103. [39] W.C. Huang, Y.L. Kuo, P.C. Su, Y.H. Tseng, H.Y. Lee, Y. Ku, Redox performance of Na-modified Fe2O3/Al2O3 with syngas as reducing agent in chemical looping combustion process, Chem. Eng. J. 334(2018) 2079-2087. [40] L. Liu, M.R. Zachariah, Enhanced performance of alkali metal doped Fe2O3 and Fe2O3/Al2O3 composites as oxygen carrier material in chemical looping combustion, Energ. Fuel 27(8) (2013) 4977-4983. [41] Z. Ma, S. Zhang, R. Xiao, Insights into the relationship between microstructural evolution and deactivation of Al2O3 supported Fe2O3 oxygen carrier in chemical looping combustion, Energ. Convers. Manage. 188(2019) 429-437. [42] Y. Saito, F. Kosaka, N. Kikuchi, H. Hatano, J. Otomo, Evaluation of microstructural changes and performance degradation in iron-based oxygen carriers during redox cycling for chemical looping systems with image analysis, Ind. Eng. Chem. Res. 57(16) (2018) 5529-5538. [43] J.W. Hu, V.V. Galvita, H. Poelman, G.B. Marin, Advanced chemical looping materials for CO2 utilization:A review, Materials 11(7) (2018) 1187. [44] A. Mishra, F. Li, Chemical looping at the nanoscale-challenges and opportunities, Curr. Opin. Chem. Eng. 20(2018) 143-150. [45] J. Adanez, A. Abad, F.G. Labiano, P. Gayan, L.F. Diego, Progress in chemicallooping combustion and reforming technologies, Prog. Energ. Combust. 38(2) (2012) 215-282. [46] Q.L. Song, R. Xiao, Z.Y. Deng, W.G. Zheng, L.H. Shen, J. Xiao, Multicycle study on chemical-looping combustion of simulated coal gas with a CaSO4 oxygen carrier in a fluidized bed reactor, Energ. Fuel 22(6) (2008) 3661-3672. |