Chinese Journal of Chemical Engineering ›› 2021, Vol. 39 ›› Issue (11): 261-268.DOI: 10.1016/j.cjche.2021.08.020
Previous Articles Next Articles
Yongkai Xu, Haozheng Sun, Cunshuang Ma, Jingjing Gai, Yanhua Wan, Weihua Chen
Received:
2021-04-14
Revised:
2021-08-29
Online:
2021-12-27
Published:
2021-11-28
Contact:
Weihua Chen
Supported by:
Yongkai Xu, Haozheng Sun, Cunshuang Ma, Jingjing Gai, Yanhua Wan, Weihua Chen
通讯作者:
Weihua Chen
基金资助:
Yongkai Xu, Haozheng Sun, Cunshuang Ma, Jingjing Gai, Yanhua Wan, Weihua Chen. Pre-sodiation strategy for superior sodium storage batteries[J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 261-268.
Yongkai Xu, Haozheng Sun, Cunshuang Ma, Jingjing Gai, Yanhua Wan, Weihua Chen. Pre-sodiation strategy for superior sodium storage batteries[J]. 中国化学工程学报, 2021, 39(11): 261-268.
[1] C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling, F. Ding, X. Qi, Y. Lu, X. Bai, B. Li, H. Li, A. Aspuru-Guzik, X. Huang, C. Delmas, M. Wagemaker, L. Chen, Y. Hu, Rational design of layered oxide materials for sodium-ion batteries, Science 370(2020) 708-712. [2] Y. Wan, K. Song, W. Chen, C. Qin, X. Zhang, J. Zhang, H. Dai, Z. Hu, P. Yan, C. Liu, S. Sun, S.-L. Chou, C. Shen, Ultra-high initial coulombic efficiency induced by interface engineering enables rapid, stable sodium storage, Angew. Chem. Int. Ed. 60(2021) 11481-11486. [3] W. Chen, X. Zhang, L. Mi, C. Liu, J. Zhang, S. Cui, X. Feng, Y. Cao, C. Shen, Highperformance flexible freestanding anode with hierarchical 3D CarbonNetworks/Fe7S8/Graphene for applicable sodium-ion batteries, Adv. Mater. 31(2019) 1806664. [4] J.M. Tarascon, Na-ion versus Li-ion batteries:Complementarity rather than competitiveness, Joule. 4(2020) 1616-1620. [5] M. Chen, W. Hua, J. Xiao, D. Cortie, W. Chen, E. Wang, Z. Hu, Q. Gu, X. Wang, S. Indris, S. Chou, S. Dou, NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density, Nat. Commun. 10(2019) 1480. [6] K. Chen, G. Li, Y. Wang, W. Chen, L. Mi, High loading FeS2 nanoparticles anchored on biomass-derived carbon tube as low cost and long cycle anode for sodium-ion batteries, Green Energy Environ. 5(2020) 50-58. [7] Z. Lu, W. Wang, J. Zhou, Z. Bai, FeS2@TiO2 nanorods as high-performance anode for sodium ion battery, Chinese J. Chem. Eng. 28(2020) 2699-2706. [8] K. Song, C. Liu, L. Mi, S. Chou, W. Chen, C. Shen, Recent progress on the alloybased anode for sodium-ion batteries and potassium-ion batteries, Small 17(2021) 1903194. [9] J. Shi, L. Ding, Y. Wan, L. Mi, L. Chen, D. Yang, Y. Hu, W. Chen, Achieving longcycling sodium-ion full cells in ether-based electrolyte with vinylene carbonate additive, J. Energy Chem. 57(2021) 650-655. [10] T. Wang, K. Yang, J. Shi, S. Zhou, L. Mi, H. Li, W. Chen, Simple synthesis of sandwich-like SnSe2/rGO as high initial coulombic efficiency and high stability anode for sodium-ion batteries, J. Energy Chem. 46(2020) 71-77. [11] J. Zhou, Y. Yang, Y. Zhang, S. Duan, X. Zhou, W. Sun, S. Xu, Sulfur in amorphous silica for an advanced room-temperature sodium-sulfur battery, Angew. Chem. Int. Ed. 60(2021) 10129-10136. [12] B. Zhang, T. Sheng, Y. Wang, S. Chou, K. Davey, S. Dou, S. Qiao, Long-life roomtemperature sodium-sulfur batteries by virtue of transition-metalnanocluster-sulfur interactions, Angew. Chem. Int. Ed. 58(2019) 1484-1488. [13] J. Zhu, J. Zou, H. Cheng, Y. Gu, Z. Lu, High energy batteries based on sulfur cathode, Green Energy Environ. 4(2019) 345-359. [14] D. Yang, W. Chen, X. Zhang, L. Mi, C. Liu, L. Chen, X. Guan, Y. Cao, C. Shen, Facile and scalable synthesis of low-cost FeS@C as long-cycle anodes for sodium-ion batteries, J. Mater. Chem. A. 7(2019) 19709-19718. [15] X. Li, K. Li, S. Zhu, K. Fan, L. Lyu, H. Yao, Y. Li, J. Hu, H. Huang, Y. Mai, J.B. Goodenough, Fiber-in-tube design of Co9S8-Carbon/Co9S8:Enabling efficient sodium storage, Angew. Chem. Int. Ed. 58(2019) 6239-6243. [16] Y. Liu, X. Yu, Y. Fang, X. Zhu, J. Bao, X. Zhou, X. (David) Lou, Confining SnS2 ultrathin nanosheets in hollow carbon nanostructures for efficient capacitive sodium storage, Joule 2(2018) 725-735. [17] L. Zhu, X. Yang, Y. Xiang, P. Kong, X. Wu, Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode, Rare Met. 40(2021) 1383-1390. [18] P. Zhang, F. Qin, L. Zou, M. Wang, K. Zhang, Y. Lai, J. Li, Few-layered MoS2/C with expanding:D-spacing as a high-performance anode for sodium-ion batteries, Nanoscale 9(2017) 12189-12195. [19] D. Zhao, M. Yin, C. Feng, K. Zhan, Q. Jiao, H. Li, Y. Zhao, Rational design of Ndoped CuS@C nanowires toward high-performance half/full sodium-ion batteries, ACS Sustain. Chem. Eng. 8(2020) 11317-11327. [20] X. Chang, Y. Ma, M. Yang, T. Xing, L. Tang, T. Chen, Q. Guo, X. Zhu, J. Liu, H. Xia, In-situ solid-state growth of N, S codoped carbon nanotubes encapsulating metal sulfides for high-efficient-stable sodium ion storage, Energy Storage Mater. 23(2019) 358-366. [21] K. Chen, Y. Zhang, C. Li, High-rate nanostructured pyrite cathodes enabled by fluorinated surface and compact grain stacking via sulfuration of ionic liquid coated fluorides, ACS Nano 12(2018) 12444-12455. [22] X. Li, S. Qi, W. Zhang, Y. Feng, J. Ma, Recent progress on FeS2 as anodes for metal-ion batteries, Rare Met. 39(2020) 1239-1255. [23] L. Jiang, C. Yan, Y. Yao, W. Cai, J. Huang, Q. Zhang, Inhibiting solvent Cointercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries, Angew. Chem. Int. Ed. 60(2021) 3402-3406. [24] J. Jo, J. Choi, Y. Park, J. Ko, H. Yashiro, S. Myung, A new pre-sodiation additive for sodium-ion batteries, Energy Storage Mater. 32(2020) 281-289. [25] K. Zou, W. Deng, P. Cai, X. Deng, B. Wang, C. Liu, J. Li, H. Hou, G. Zou, X. Ji, Prelithiation/presodiation techniques for advanced electrochemical energy storage systems:concepts, applications, and perspectives, Adv. Funct. Mater. 31(2021) 2005581. [26] Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, J. Chen, Pyrite FeS2 for highrate and long-life rechargeable sodium batteries, Energy Environ. Sci. 8(2015) 1309-1316. [27] F. Huang, R. Wu, L. Jin, Y. Sun, J. Jian, Synthesis of NaFeS2 nanorods by solvothermal technique, Adv. Mater. Res. 774-776(2013) 603-608. [28] Q. Guo, Y. Ma, T. Chen, Q. Xia, M. Yang, H. Xia, Y. Yu, Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries, ACS Nano 11(2017) 12658-12667. [29] D. Su, K. Kretschmer, G. Wang, Improved electrochemical performance of Naion batteries in ether-based electrolytes:a case study of ZnS nanospheres, Adv. Energy Mater. 6(2016) 1501785. [30] L. Chen, K. Song, J. Shi, J. Zhang, L. Mi, W. Chen, C. Liu, C. Shen, PAANa-induced ductile SEI of bare micro-sized FeS enables high sodium-ion storage performance, Sci. China Mater. 64(2021) 105-114. [31] X. Wang, J. Shi, L. Mi, Y. Zhai, J. Zhang, X. Feng, Z. Wu, W. Chen, Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries, Rare Met. 39(2020) 1053-1062. [32] G. Yao, X. Zhang, Y. Yan, J. Zhang, K. Song, J. Shi, L. Mi, J. Zheng, X. Feng, W. Chen, Facile synthesis of hierarchical Na2Fe(SO4)2@rGO/C as high-voltage cathode for energy density-enhanced sodium-ion batteries, J. Energy Chem. 50(2020) 387-394. [33] Y. Wang, J. Yang, S. Chou, H. Liu, W. Zhang, D. Zhao, S. Dou, Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries, Nat. Commun. 6(2015) 8689. [34] M. Zhou, H. Tao, K. Wang, S. Cheng, K. Jiang, Nano-embedded microstructured FeS2@C as a high capacity and cycling-stable Na-storage anode in an optimized ether-based electrolyte, J. Mater. Chem. A. 6(2018) 24425-24432. [35] D. Yu, Q. Zhu, L. Cheng, S. Dong, X. Zhang, H. Wang, N. Yang, Anion solvation regulation enables long cycle stability of graphite cathodes, ACS Energy Lett. (2021) 949-958. |
[1] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[2] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[3] | Shaojun Niu, Guobin Zhu, Kai Wu, Honghe Zheng. The feasibility for natural graphite to replace artificial graphite in organic electrolyte with different film-forming additives [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 58-69. |
[4] | Yingxiang Ni, Can Yuan, Shilong Li, Jian Lu, Lei Yan, Wei Gu, Weihong Xing, Wenheng Jing. Temperature-induced hydrophobicity transition of MXene membrane for directly preparing W/O emulsions [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 59-62. |
[5] | Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 212-221. |
[6] | Yi Shen, Xinshuang Chu, Qinghong Shi. Unraveling structure and performance of protein a ligands at liquid–solid interfaces: A multi-techniques analysis [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 232-239. |
[7] | Guolang Zhou, Xiaowei Li, Linlin Chen, Guiling Luo, Jun Gu, Jie Zhu, Jiangtao Yu, Jingzhou Yin, Yanhong Chao, Wenshuai Zhu. Construction of porous disc-like lithium manganate for rapid and selective electrochemical lithium extraction from brine [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 316-322. |
[8] | Wenjuan Yan, Puhua Sun, Chen Luo, Xingfan Xia, Zhifei Liu, Yuming Zhao, Shuxia Zhang, Liang Sun, Feng Du. PtCo-based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 101-123. |
[9] | Fengfeng Gao, Jinhua Luo, Xuefeng Zhang, Xiaogang Hao, Guoqing Guan, Zhong Liu, Jun Li, Qinglong Luo. Electrodeposited iodide ions imprinted polypyrrole@bismuth oxyiodide film for an electrochemically switched renewable extractor towards iodide ions [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 161-169. |
[10] | Guangchun Song, Yuanxing Ning, Yuxing Li, Wuchang Wang. Investigation on hydrate growth at the oil–water interface: In the presence of asphaltene [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 211-218. |
[11] | Shaoxiang Cai, Han Yan, Qiuyi Wang, He Han, Ru Li, Zhichao Lou. Top-down strategy for bamboo lignocellulose-derived carbon heterostructure with enhanced electromagnetic wave dissipation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 360-369. |
[12] | Jiankang Wang, Yajing Wang, Zhongping Yao, Zhaohua Jiang. Metal-organic framework-derived Ni doped Co3S4 hierarchical nanosheets as a monolithic electrocatalyst for highly efficient hydrogen evolution reaction in alkaline solution [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 380-388. |
[13] | Shusheng Li, Rui Kuang, Xiangzheng Kong, Xiaoli Zhu, Xubao Jiang. Immobilization of cobalt oxide nanoparticles on porous nitrogen-doped carbon as electrocatalyst for oxygen evolution [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 10-18. |
[14] | Hongliang Qian, Hongzhou Tian, Guoqiang Yang, Gaodong Yang, Lei Li, Feng Zhang, Zheng Zhou, Weihua Huang, Yufu Chen, Zhibing Zhang. Microinterface intensification in hydrogenation and air oxidation processes [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 292-300. |
[15] | Jule Ma, Peiwen Xiao, Pingmei Wang, Xue Han, Jianhui Luo, Ruifang Shi, Xuan Wang, Xianyu Song, Shuangliang Zhao. Molecular dynamics simulation study on π-π stacking of Gemini surfactants in oil/water systems [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 335-346. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 139
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 214
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||