Chinese Journal of Chemical Engineering ›› 2021, Vol. 39 ›› Issue (11): 37-50.DOI: 10.1016/j.cjche.2021.09.014
• Reviews • Previous Articles Next Articles
Chenxing Yi1, Lijie Zhou2, Xiqing Wu1, Wei Sun1, Longsheng Yi1, Yue Yang1
Received:
2021-04-15
Revised:
2021-08-15
Online:
2021-12-27
Published:
2021-11-28
Contact:
Xiqing Wu, Wei Sun, Yue Yang
Supported by:
Chenxing Yi1, Lijie Zhou2, Xiqing Wu1, Wei Sun1, Longsheng Yi1, Yue Yang1
通讯作者:
Xiqing Wu, Wei Sun, Yue Yang
基金资助:
Chenxing Yi, Lijie Zhou, Xiqing Wu, Wei Sun, Longsheng Yi, Yue Yang. Technology for recycling and regenerating graphite from spent lithium-ion batteries[J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 37-50.
Chenxing Yi, Lijie Zhou, Xiqing Wu, Wei Sun, Longsheng Yi, Yue Yang. Technology for recycling and regenerating graphite from spent lithium-ion batteries[J]. 中国化学工程学报, 2021, 39(11): 37-50.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.09.014
[1] Y. Yang, E.G. Okonkwo, G.Y. Huang, S.M. Xu, W. Sun, Y.H. He, On the sustainability of lithium-ion battery industry-A review and perspective, Energy Storage Mater. 36(2021) 186-212. [2] T.A. Atia, G. Elia, R. Hahn, P. Altimari, F. Pagnanelli, Closed-loop hydrometallurgical treatment of end-of-life lithium ion batteries:Towards zero-waste process and metal recycling in advanced batteries, J. Energy Chem. 35(2019) 220-227. [3] S.Y. Lei, Y.T. Zhang, S.L. Song, R. Xu, W. Sun, S.M. Xu, Y. Yue, Strengthening valuable metal recovery from spent lithium-ion batteries by environmentally friendly reductive thermal treatment and electrochemical leaching, ACS Sustain. Chem. Eng. 9(20) (2021) 7053-7062. [4] Y. Yang, S.M. Xu, Y.H. He, Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes, Waste Manage. 64(2017) 219-227. [5] S.Y. Lei, Y. Cao, X.F. Cao, W. Sun, Y.Q. Weng, Y. Yang, Separation of lithium and transition metals from leachate of spent lithium-ion batteries by solvent extraction method with Versatic 10, Sep. Purif. Technol. 250(2020) 117258. [6] Y.X. Yang, X.Q. Meng, H.B. Cao, X. Lin, C.M. Liu, Y. Sun, Y. Zhang, Z. Sun, Selective recovery of lithium from spent lithium iron phosphate batteries:a sustainable process, Green Chem. 20(13) (2018) 3121-3133. [7] Y.R. Liang, C.Z. Zhao, H. Yuan, Y. Chen, W.C. Zhang, J.Q. Huang, D.S. Yu, Y.L. Liu, M.M. Titirici, Y.L. Chueh, H.J. Yu, Q. Zhang, A review of rechargeable batteries for portable electronic devices, Infomat 1(1) (2019) 6-32. [8] J. Ordoñez, E.J. Gago, A. Girard, Processes and technologies for the recycling and recovery of spent lithium-ion batteries, Renew. Sustain. Energy Rev. 60(2016) 195-205. [9] B.B. Ma, Y.W. Huang, Z.Z. Nie, X.B. Qiu, D.W. Su, G.X. Wang, J.M. Yuan, X.Q. Xie, Z.J. Wu, Facile synthesis of Camellia oleifera shell-derived hard carbon as an anode material for lithium-ion batteries, RSC Adv. 9(35) (2019) 20424-20431. [10] Y.Q. Wang, N. An, L. Wen, L. Wang, X.T. Jiang, F. Hou, Y.X. Yin, J. Liang, Recent progress on the recycling technology of Li-ion batteries, J. Energy Chem. 55(2021) 391-419. [11] Y.F. Song, B.Y. Xie, S.L. Song, S.Y. Lei, W. Sun, R. Xu, Y. Yang, Regeneration of LiFePO4 from spent lithium-ion batteries via a facile process featuring acid leaching and hydrothermal synthesis, Green Chem. 23(2021) 3963-3971. [12] Y. Yang, G.Y. Huang, M. Xie, S.M. Xu, Y.H. He, Synthesis and performance of spherical LiNixCoyMn1-x-yO2 regenerated from nickel and cobalt scraps, Hydrometallurgy 165(2016) 358-369. [13] X. Lai, Y.F. Huang, H.H. Gu, C. Deng, X.B. Han, X.N. Feng, Y.J. Zheng, Turning waste into wealth:A systematic review on echelon utilization and material recycling of retired lithium-ion batteries, Energy Storage Mater. 40(2021) 96-123. [14] Lithium Ion Battery Recycling Market Report, 2025; EsticastResearch & Consulting. https://www.marketsandmarkets.com/Market-Reports/lithiumion-battery-recycling-market-153488928.html (accessed March 9, 2019). [15] Global EV Outlook 2019; International Energy Agency. https://www.iea.org/gevo2019/(accessed Aug 20, 2019). [16] Global EV Outlook. https://www.greentechmedia.com/squared/electricavenue/6-stats-on-the-state-of-the-global-ev-sector (accessed 2019). [17] Y. Yang, E.G. Okonkwo, G.Y. Huang, S.M. Xu, W. Sun, Y.H. He, On the sustainability of lithium ion battery industry-A review and perspective, Energy Storage Mater. 36(2021) 186-212. [18] Y. Yang, S. Li, Q. Zhang, Y. Zhang, S.M. Xu, Spherical agglomeration of octahedral LiNi0.5Co4xMn1.5-3xO4 cathode material prepared by a continuous coprecipitation method for 5 V lithium-ion batteries, Ind. Eng. Chem. Res. 56(1) (2017) 175-182. [19] C.X. Yi, Y. Yang, T. Zhang, X.Q. Wu, W. Sun, L.S. Yi, A green and facile approach for regeneration of graphite from spent lithium ion battery, J. Clean. Prod. 277(2020) 123585. [20] P. Marques, R. Garcia, L. Kulay, F. Freire, Comparative life cycle assessment of lithium-ion batteries for electric vehicles addressing capacity fade, J. Clean. Prod. 229(2019) 787-794. [21] Z.C. Xu, J. Wang, P.D. Lund, Q. Fan, T. Dong, Y. Liang, J. Hong, A novel clustering algorithm for grouping and cascade utilization of retired Li-ion batteries, J. Energy Storage 29(2020) 101303. [22] K.M. Winslow, S.J. Laux, T.G. Townsend, A review on the growing concern and potential management strategies of waste lithium-ion batteries, Resour. Conserv. Recycl. 129(2018) 263-277. [23] L. Sun, K.Q. Qiu, Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries, J. Hazard. Mater. 194(2011) 378-384. [24] D.H.P. Kang, M.J. Chen, O.A. Ogunseitan, Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste, Environ. Sci. Technol. 47(10) (2013) 5495-5503. [25] J. Dewulf, G. van der Vorst, K. Denturck, H. van Langenhove, W. Ghyoot, J. Tytgat, K. Vandeputte, Recycling rechargeable lithium ion batteries:Critical analysis of natural resource savings, Resour. Conserv. Recycl. 54(4) (2010) 229-234. [26] X.L. Zeng, J.H. Li, Spent rechargeable lithium batteries in e-waste:composition and its implications, Front. Environ. Sci. Eng. 8(5) (2014) 792-796. [27] Y. Yang, F.H. Liu, S.L. Song, H.H. Tang, S.T. Ding, W. Sun, S.Y. Lei, S.M. Xu, Recovering valuable metals from the leaching liquor of blended cathode material of spent lithium-ion battery, J. Environ. Chem. Eng. 8(5) (2020) 104358. [28] Y.L. Yao, M.Y. Zhu, Z. Zhao, B.H. Tong, Y.Q. Fan, Z.S. Hua, Hydrometallurgical processes for recycling spent lithium-ion batteries:A critical review, ACS Sustainable Chem. Eng. 6(11) (2018) 13611-13627. [29] W. Lv, Z.H. Wang, H.B. Cao, Y. Sun, Y. Zhang, Z. Sun, A critical review and analysis on the recycling of spent lithium-ion batteries, ACS Sustain. Chem. Eng. 6(2) (2018) 1504-1521. [30] F. Gu, J.F. Guo, X. Yao, P.A. Summers, S.D. Widijatmoko, P. Hall, An investigation of the current status of recycling spent lithium-ion batteries from consumer electronics in China, 161(2017) 765-780. [31] G.Y. Huang, Y. Yang, H.Y. Sun, S.M. Xu, J.L. Wang, M. Ahmad, Z.H. Xu, Defective ZnCo2O4 with Zn vacancies:Synthesis, property and electrochemical application, J. Alloy. Compd. 724(2017) 1149-1156. [32] H. Ku, Y. Jung, M. Jo, S. Park, S. Kim, D. Yang, K. Rhee, E.M. An, J. Sohn, K. Kwon, Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching, J. Hazard. Mater. 313(2016) 138-146. [33] Y.L. Zhao, X.Z. Yuan, L.B. Jiang, J. Wen, H. Wang, R.P. Guan, J.J. Zhang, G.M. Zeng, Regeneration and reutilization of cathode materials from spent lithiumion batteries, Chem. Eng. J. 383(2020) 123089. [34] Y. Yang, S.Y. Lei, S.L. Song, W. Sun, L.S. Wang, Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries, Waste Manage. 102(2020) 131-138. [35] S.P. Barik, G. Prabaharan, B. Kumar, An innovative approach to recover the metal values from spent lithium-ion batteries, Waste Manage. 51(2016) 222-226. [36] F. Arshad, L. Li, K. Amin, E.S. Fan, N. Manurkar, A. Ahmad, J.B. Yang, F. Wu, R.J. Chen, A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries, ACS Sustain. Chem. Eng. 8(36) (2020) 13527-13554. [37] B. Huang, Z.F. Pan, X.Y. Su, L. An, Recycling of lithium-ion batteries:Recent advances and perspectives, J. Power Sources 399(2018) 274-286. [38] A. Väyrynen, J. Salminen, Lithium ion battery production, J. Chem. Thermodyn. 46(2012) 80-85. [39] Y.Y. Zhang, N.N. Song, J.J. He, R.X. Chen, X.D. Li, Lithiation-aided conversion of end-of-life lithium-ion battery anodes to high-quality graphene and graphene oxide, Nano Lett. 19(1) (2019) 512-519. [40] S. Natarajan, V. Aravindan, An urgent call to spent LIB recycling:whys and wherefores for graphite recovery, Adv. Energy Mater. 10(37) (2020) 2002238. [41] B. Moradi, G.G. Botte, Recycling of graphite anodes for the next generation of lithium ion batteries, J. Appl. Electrochem. 46(2) (2016) 123-148. [42] M. Wissler, Graphite and carbon powders for electrochemical applications, J. Power Sources 156(2) (2006) 142-150. [43] G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, S. Lambert, A. Abbot, K.S. Ryder, L. Gaines, P. Anderson, Recycling lithium-ion batteries from electric vehicles, Nature 575(7781) (2019) 75-86. [44] Q. Xu, Y. Wang, X.Y. Shi, Y.J. Zhong, Z.G. Wu, Y. Song, G.K. Wang, Y.X. Liu, B.H. Zhong, X.D. Guo, The direct application of spent graphite as a functional interlayer with enhanced polysulfide trapping and catalytic performance for Li-S batteries, Green Chem. 23(2) (2021) 942-950. [45] Y. Yang, G.Y. Huang, S.M. Xu, Y.H. He, X. Liu, Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries, Hydrometallurgy 165(2016) 390-396. [46] P. Guo, H.H. Song, X.H. Chen, Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries, Electrochem. Commun. 11(6) (2009) 1320-1324. [47] K. Ohzeki, Y. Saito, B. Golman, K. Shinohara, Shape modification of graphite particles by rotational impact blending, Carbon 43(8) (2005) 1673-1679. [48] Y. Lee, The effect of active material, conductive additives, and binder in a cathode composite electrode on battery performance, Energies 12(4) (2019) 658. [49] L.F. Zhou, D.R. Yang, T. Du, H. Gong, W.B. Luo, The current process for the recycling of spent lithium ion batteries, Front. Chem. 8(2020) 578044. [50] M. Yoshio, H.Y. Wang, K. Fukuda, Spherical carbon-coated natural graphite as a lithium-ion battery-anode material, Angew. Chem. Int. Ed. 42(35) (2003) 4203-4206. [51] Y. Nishi, The development of lithium ion secondary batteries, Chem. Rec. 1(5) (2001) 406-413. [52] Y. Yang, G.Y. Huang, H.Y. Sun, M. Ahmad, Q.Y. Mou, H.M. Zhang, Preparation and electrochemical properties of mesoporous NiCo2O4 double-hemisphere used as anode for lithium-ion battery, J Colloid Interface Sci. 529(2018) 357-365. [53] D. Miranda, A. Gören, C.M. Costa, M.M. Silva, A.M. Almeida, S. LancerosMéndez, Theoretical simulation of the optimal relation between active material, binder and conductive additive for lithium-ion battery cathodes, Energy 172(2019) 68-78. [54] Y.H. Chen, C.W. Wang, X. Zhang, A.M. Sastry, Porous cathode optimization for lithium cells:Ionic and electronic conductivity, capacity, and selection of materials, J. Power Sources 195(9) (2010) 2851-2862. [55] L. Fransson, T. Eriksson, K. Edström, T. Gustafsson, J.O. Thomas, Influence of carbon black and binder on Li-ion batteries, J. Power Source. 101(1) (2001) 1-9. [56] H.H. Zheng, R.Z. Yang, G. Liu, X.Y. Song, V.S. Battaglia, Cooperation between active material, polymeric binder and conductive carbon additive in lithium ion battery cathode, J. Phys. Chem. C 116(7) (2012) 4875-4882. [57] R.J. Zheng, W.H. Wang, Y.K. Dai, Q.X. Ma, Y.L. Liu, D.Y. Mu, R.H. Li, J. Ren, C.S. Dai, A closed-loop process for recycling LiNixCoyMn(1-x-y)O2 from mixed cathode materials of lithium-ion batteries, Green Energy Environ. 2(1) (2017) 42-50. [58] Y. Shi, G. Chen, F. Liu, X.J. Yue, Z. Chen, Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes, ACS Energy Lett. 3(7) (2018) 1683-1692. [59] H.F. Zhang, X.W. Wang, Y. Liang, Preparation and characterization of a Lithium-ion battery separator from cellulose nanofibers, Heliyon 1(2) (2015) e00032. [60] H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X.W. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy Environ. Sci. 7(12) (2014) 3857-3886. [61] D.S. Kim, J.S. Sohn, C.K. Lee, J.H. Lee, K.S. Han, Y.I. Lee, Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries, J. Power Sources 132(1-2) (2004) 145-149. [62] D. Bresser, D. Buchholz, A. Moretti, A. Varzi, S. Passerini, Alternative binders for sustainable electrochemical energy storage-the transition to aqueous electrode processing and bio-derived polymers, Energy Environ. Sci. 11(11) (2018) 3096-3127. [63] I. Doberdò, N. Löffler, N. Laszczynski, D. Cericola, N. Penazzi, S. Bodoardo, G.T. Kim, S. Passerini, Enabling aqueous binders for lithium battery cathodes-Carbon coating of aluminum current collector, J. Power Sources 248(2014) 1000-1006. [64] X. Zhang, Y. Xie, H. Cao, F. Nawaz, Y. Zhang, A novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps intended for lithium-ion batteries, Waste Manage. 34(9) (2014) 1715-1724. [65] T. Georgi-Maschler, B. Friedrich, R. Weyhe, H. Heegn, M. Rutz, Development of a recycling process for Li-ion batteries, J. Power Sources 207(2012) 173-182. [66] J.C. Barbosa, J.P. Dias, S. Lanceros-Méndez, C.M. Costa, Recent advances in poly (vinylidene fluoride) and its copolymers for lithium-ion battery separators, Membranes (Basel) 8(3) (2018) E45. [67] C.M. Costa, J.L. Gomez Ribelles, S. Lanceros-Méndez, G.B. Appetecchi, B. Scrosati, Poly(vinylidenefluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems, J. Power Sources 245(2014) 779-786. [68] F.X.Y. Zeng, R.Z. Xu, L. Ye, B.J. Xiong, J. Kang, M. Xiang, L. Li, X.Y. Sheng, Z.H. Hao, Effects of heat setting on the morphology and performance of polypropylene separator for lithium ion batteries, Ind. Eng. Chem. Res. 58(6) (2019) 2217-2224. [69] C.M. Costa, J.C. Barbosa, R. Gonalves, H. Castro, F.J. Del Campo, S. LancerosMendez, Recycling and environmental issues of lithium-ion batteries:advances, challenges and opportunities, Energy Storage Mater. 37(2021) 433-465. [70] M. Grützke, X. Mönnighoff, F. Horsthemke, V. Kraft, M. Winter, S. Nowak, Extraction of lithium-ion battery electrolytes with liquid and supercritical carbon dioxide and additional solvents, RSC Adv. 5(54) (2015) 43209-43217. [71] L.B. Chen, K. Wang, X.H. Xie, J.Y. Xie, Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries, J. Power Sources 174(2) (2007) 538-543. [72] V. Etacheri, O. Haik, Y. Goffer, G.A. Roberts, I.C. Stefan, R. Fasching, D. Aurbach, Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes, Langmuir 28(1) (2012) 965-976. [73] M. Park, X.C. Zhang, M. Chung, G.B. Less, A.M. Sastry, A review of conduction phenomena in Li-ion batteries, J. Power Sources 195(24) (2010) 7904-7929. [74] J.F. Xiao, J. Guo, L. Zhan, Z.M. Xu, A cleaner approach to the discharge process of spent lithium ion batteries in different solutions, J. Clean. Prod. 255(2020) 120064. [75] E. Gratz, Q.N. Sa, D. Apelian, Y. Wang, A closed loop process for recycling spent lithium ion batteries, J. Power Sources 262(2014) 255-262. [76] L.P. Yao, Q. Zeng, T. Qi, J. Li, An environmentally friendly discharge technology to pretreat spent lithium-ion batteries, J. Clean. Prod. 245(2020) 118820. [77] J.F. Xiao, J. Li, Z.M. Xu, Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy, J. Hazard. Mater. 338(2017) 124-131. [78] J.Q. Xu, H.R. Thomas, R.W. Francis, K.R. Lum, J.W. Wang, B. Liang, A review of processes and technologies for the recycling of lithium-ion secondary batteries, J. Power Sources 177(2) (2008) 512-527. [79] X.H. Zheng, Z.W. Zhu, X. Lin, Y. Zhang, Y. He, H.B. Cao, Z. Sun, A mini-review on metal recycling from spent lithium ion batteries, Engineering 4(3) (2018) 361-370. [80] T. Zhang, Y.Q. He, L.H. Ge, R.S. Fu, X. Zhang, Y.J. Huang, Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries, J. Power Sources 240(2013) 766-771. [81] A.J. da Costa, J.F. Matos, A.M. Bernardes, I.L. Muller, Beneficiation of cobalt, copper and aluminum from wasted lithium-ion batteries by mechanical processing, Int. J. Miner. Process. 145(2015) 77-82. [82] H.F. Wang, J.S. Liu, X.J. Bai, S. Wang, D. Yang, Y.P. Fu, Y.Q. He, Separation of the cathode materials from the Al foil in spent lithium-ion batteries by cryogenic grinding, Waste Manage. 91(2019) 89-98. [83] Y. Chen, N. Liu, F. Hu, L. Ye, Y. Xi, S. Yang, Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries, Waste Manage. 75(2018) 469-476. [84] G.W. Zhang, Y.Q. He, Y. Feng, H.F. Wang, T. Zhang, W.N. Xie, X.N. Zhu, Enhancement in liberation of electrode materials derived from spent lithiumion battery by pyrolysis, J. Clean. Prod. 199(2018) 62-68. [85] G.W. Zhang, Y.Q. He, Y. Feng, H.F. Wang, X.N. Zhu, Pyrolysis-ultrasonicassisted flotation technology for recovering graphite and LiCoO2 from spent lithium-ion batteries, ACS Sustain. Chem. Eng. 6(8) (2018) 10896-10904. [86] Y. Yang, S.L. Song, S.Y. Lei, W. Sun, H.S. Hou, F. Jiang, X.B. Ji, W.Q. Zhao, Y.H. Hu, A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery, Waste Manag. 85(2019) 529-537. [87] M.M. Wang, Q.Y. Tan, L.L. Liu, J.H. Li, A low-toxicity and high-efficiency deep eutectic solvent for the separation of aluminum foil and cathode materials from spent lithium-ion batteries, J. Hazard. Mater. 380(2019) 120846. [88] M.M. Wang, Q.Y. Tan, L.L. Liu, J.H. Li, A facile, environmentally friendly, and low-temperature approach for decomposition of polyvinylidene fluoride from the cathode electrode of spent lithium-ion batteries, ACS Sustainable Chem. Eng. 7(15) (2019) 12799-12806. [89] Y.J. Liu, Q.Y. Hu, X.H. Li, Z.X. Wang, H.J. Guo, Recycle and synthesis of LiCoO2 from incisors bound of Li-ion batteries, Trans. Nonferrous Met. Soc. China 16(4) (2006) 956-959. [90] J.H. Li, S.W. Zhong, D.L. Xiong, H. Chen, Synthesis and electrochemical performances of LiCoO2 recycled from the incisors bound of Li-ion batteries, Rare Met. 28(4) (2009) 328-332. [91] X. Song, T. Hu, C. Liang, H.L. Long, L. Zhou, W. Song, L. You, Z.S. Wu, J.W. Liu, Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method, RSC Adv. 7(8) (2017) 4783-4790. [92] X.X. Zhang, Q. Xue, L. Li, E. Fan, F. Wu, R.J. Chen, Sustainable recycling and regeneration of cathode scraps from industrial production of lithium-ion batteries, ACS Sustain. Chem. Eng. 4(12) (2016) 7041-7049. [93] D.W. Song, X.Q. Wang, E.L. Zhou, P.Y. Hou, F.X. Guo, L.Q. Zhang, Recovery and heat treatment of the Li(Ni1/3Co1/3Mn1/3)O2 cathode scrap material for lithium ion battery, J. Power Sources 232(2013) 348-352. [94] L. Li, L.Y. Zhai, X.X. Zhang, J. Lu, R.J. Chen, F. Wu, K. Amine, Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process, J. Power Sources 262(2014) 380-385. [95] L.P. He, S.Y. Sun, X.F. Song, J.G. Yu, Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning, Waste Manage. 46(2015) 523-528. [96] L. Yao, Y. Feng, G.X. Xi, A new method for the synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries, RSC Adv. 5(55) (2015) 44107-44114. [97] K. He, Z.Y. Zhang, L. Alai, F.S. Zhang, A green process for exfoliating electrode materials and simultaneously extracting electrolyte from spent lithium-ion batteries, J. Hazard. Mater. 375(2019) 43-51. [98] D. Pant, T. Dolker, Green and facile method for the recovery of spent Lithium Nickel Manganese Cobalt Oxide (NMC) based Lithium ion batteries, Waste Manag. 60(2017) 689-695. [99] X. Zeng, J. Li, Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries, J Hazard. Mater. 271(2014) 50-56. [100] F. Jeschull, D. Brandell, M. Wohlfahrt-Mehrens, M. Memm, Water-soluble binders for lithium-ion battery graphite electrodes:slurry rheology, coating adhesion, and electrochemical performance, Energy Technol. 5(11) (2017) 2108-2118. [101] K.C. Kil, U. Paik, Lithium salt of carboxymethyl cellulose as an aqueous binder for thick graphite electrode in lithium ion batteries, Macromol. Res. 23(8) (2015) 719-725. [102] N. Cuesta, A. Ramos, I. Cameán, C. Antuña, A.B. García, Hydrocolloids as binders for graphite anodes of lithium-ion batteries, Electrochim. Acta 155(2015) 140-147. [103] H.R. Wang, Y.S. Huang, C.F. Huang, X.S. Wang, K. Wang, H.B. Chen, S.B. Liu, Y.P. Wu, K. Xu, W.S. Li, Reclaiming graphite from spent lithium ion batteries ecologically and economically, Electrochim. Acta 313(2019) 423-431. [104] R.T. Zhan, Z.Z. Yang, I. Bloom, L. Pan, Significance of a solid electrolyte interphase on separation of anode and cathode materials from spent Li-ion batteries by froth flotation, ACS Sustain. Chem. Eng. 9(1) (2021) 531-540. [105] G.W. Zhang, Z.X. Du, Y.Q. He, H.F. Wang, W.N. Xie, T. Zhang, A sustainable process for the recovery of anode and cathode materials derived from spent lithium-ion batteries, Sustainability 11(8) (2019) 2363. [106] J.D. Yu, Y.Q. He, L.L. Qu, J.S. Yang, W.N. Xie, X.N. Zhu, Exploring the critical role of grinding modification on the flotation recovery of electrode materials from spent lithium ion batteries, J. Clean. Prod. 274(2020) 123066. [107] R. Ruismäki, T. Rinne, A. Dan ′czak, P. Taskinen, R. Serna-Guerrero, A. Jokilaakso, Integrating flotation and pyrometallurgy for recovering graphite and valuable metals from battery scrap, Metals 10(5) (2020) 680. [108] J.S. Liu, H.F. Wang, T.T. Hu, X.J. Bai, S. Wang, W.N. Xie, J. Hao, Y.Q. He, Recovery of LiCoO2 and graphite from spent lithium-ion batteries by cryogenic grinding and froth flotation, Miner. Eng. 148(2020) 106223. [109] G.W. Zhang, Y.Q. He, H.F. Wang, Y. Feng, W.N. Xie, X.N. Zhu, Removal of organics by pyrolysis for enhancing liberation and flotation behavior of electrode materials derived from spent lithium-ion batteries, ACS Sustain. Chem. Eng. 8(5) (2020) 2205-2214. [110] G.W. Zhang, Y.Q. He, H.F. Wang, Y. Feng, W.N. Xie, X.N. Zhu, Application of mechanical crushing combined with pyrolysis-enhanced flotation technology to recover graphite and LiCoO2 from spent lithium-ion batteries, J. Clean. Prod. 231(2019) 1418-1427. [111] N.A. Laziz, J. Abou-Rjeily, A. Darwiche, J. Toufaily, A. Outzourhit, F. Ghamouss, M.T. Sougrati, Li-and Na-ion storage performance of natural graphite via simple flotation process, J. Electrochem. Sci. Te. 9(4) (2018) 320-329. [112] R.T. Zhan, Z. Oldenburg, L. Pan, Recovery of active cathode materials from lithium-ion batteries using froth flotation, Sustain. Mater. Techno. 17(2018) e00062. [113] J.D. Yu, Y.Q. He, Z.Z. Ge, H. Li, W.N. Xie, S. Wang, A promising physical method for recovery of LiCoO2 and graphite from spent lithium-ion batteries:Grinding flotation, Sep. Purif. Technol. 190(2018) 45-52. [114] Y.Q. He, T. Zhang, F.F. Wang, G.W. Zhang, W.G. Zhang, J. Wang, Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagentassisted flotation, J. Clean. Prod. 143(2017) 319-325. [115] N. Vieceli, R. Casasola, G. Lombardo, B. Ebin, M. Petranikova, Hydrometallurgical recycling of EV lithium-ion batteries:Effects of incineration on the leaching efficiency of metals using sulfuric acid, Waste Manage. 125(2021) 192-203. [116] Y. Gao, C.Y. Wang, J.L. Zhang, Q.K. Jing, B.Z. Ma, Y.Q. Chen, W.J. Zhang, Graphite recycling from the spent lithium-ion batteries by sulfuric acid curing-leaching combined with high-temperature calcination, ACS Sustainable Chem. Eng. 8(25) (2020) 9447-9455. [117] Y.C. Zhang, W.Q. Wang, Q. Fang, S.M. Xu, Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching, Waste Manage. 102(2020) 847-855. [118] Y.P. Fu, Y.Q. He, H.C. Chen, C.L. Ye, Q.C. Lu, R.N. Li, W.N. Xie, J. Wang, Effective leaching and extraction of valuable metals from electrode material of spent lithium-ion batteries using mixed organic acids leachant, J. Ind. Eng. Chem. 79(2019) 154-162. [119] Y. Yang, W. Sun, Y.J. Bu, C.Y. Zhang, S.L. Song, Y.H. Hu, Recovering valuable metals from spent lithium ion battery via a combination of reduction thermal treatment and facile acid leaching, ACS Sustainable Chem. Eng. 6(8) (2018) 10445-10453. |
[1] | Shaojun Niu, Guobin Zhu, Kai Wu, Honghe Zheng. The feasibility for natural graphite to replace artificial graphite in organic electrolyte with different film-forming additives [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 58-69. |
[2] | Suhang Jiang, Lijuan Tan, Yujia Tong, Lijian Shi, Weixing Li. A heterogeneous double chamber electro-Fenton with high production of H2O2 using La–CeO2 modified graphite felt as cathode [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 98-105. |
[3] | Hongbing Song, Lei Liu, Bingxiao Feng, Haozhong Wang, Meng Xiao, Hengjun Gai, Yubao Tang, Xiaofei Qu, Tingting Huang. Modified g-C3N4 derived from ionic liquid and urea for promoting visible-light photodegradation of organic pollutants [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 293-303. |
[4] | Xiaodong Tang, Qiankun Guo, Miaomiao Zhou, Shengwen Zhong. Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 278-286. |
[5] | Jin Zhang, Aili Wang, Hengbo Yin. Preparation of graphite nanosheets in different solvents by sand milling and their enhancement on tribological properties of lithiumbased grease [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1177-1186. |
[6] | Liang Yang, Xin Wang, Daoping Liu, Guomin Cui, Binlin Dou, Juan Wang, Shuqing Hao. Accelerated methane storage in clathrate hydrates using surfactantstabilized suspension with graphite nanoparticles [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1112-1119. |
[7] | Eduard Manek, Juma Haydary. Investigation of the liquid recycle in the reactor cascade of an industrial scale ebullated bed hydrocracking unit [J]. Chin.J.Chem.Eng., 2019, 27(2): 298-304. |
[8] | Ke Wang, Xinchao Yang, Xidong Ren, Jianhua Zhang, Zhonggui Mao. Development of a new cleaner production process for cassava ethanol [J]. , 2017, 25(4): 493-498. |
[9] | Ying Li, Jintao Guan. A stepwise optimal design of water network [J]. Chin.J.Chem.Eng., 2016, 24(6): 787-794. |
[10] | SaiWang, Songsong Xu, Chengbao Liu, Feng Chen, Dongtian Wang, Shouqing Liu, Zhigang Chen, Zhengying Wu. Characterization and adsorption behaviors of a novel synthesized mesoporous silica coated carbon composite [J]. Chin.J.Chem.Eng., 2016, 24(1): 190-195. |
[11] | Junping Song, Lianxiang Ma, Yan He, Haiquan Yan, Zan Wu, Wei Li. Modified graphite filled natural rubber composites with good thermal conductivity [J]. Chin.J.Chem.Eng., 2015, 23(5): 853-859. |
[12] | JIN Zhequan, TIAN Bo, WANG Liwei, WANG Ruzhu . Comparison on Thermal Conductivity and Permeability of Granular and Consolidated Activated Carbon for Refrigeration [J]. Chin.J.Chem.Eng., 2013, 21(6): 676-682. |
[13] | LIU Wei, YANG Dianhai, XU Li, SHEN Changming. A Modified Oxidation Ditch with Additional Internal Anoxic Zones for Enhanced Biological Nutrient Removal [J]. Chin.J.Chem.Eng., 2013, 21(2): 192-198. |
[14] | SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment [J]. , 2010, 18(5): 837-842. |
[15] | Arwa H. Rabie, Mahmoud M. El-Halwagi. Synthesis and Scheduling of Optimal Batch Water-recycle Networks [J]. , 2008, 16(3): 474-479. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||