Chinese Journal of Chemical Engineering ›› 2022, Vol. 47 ›› Issue (7): 1-10.DOI: 10.1016/j.cjche.2021.05.045
Minjie Shi1, Hangtian Zhu1, Cheng Yang2, Jing Xu1, Chao Yan1
Received:
2021-02-19
Revised:
2021-05-06
Online:
2022-08-19
Published:
2022-07-28
Contact:
Chao Yan,E-mail:chaoyan@just.edu.cn
Supported by:
Minjie Shi1, Hangtian Zhu1, Cheng Yang2, Jing Xu1, Chao Yan1
通讯作者:
Chao Yan,E-mail:chaoyan@just.edu.cn
基金资助:
Minjie Shi, Hangtian Zhu, Cheng Yang, Jing Xu, Chao Yan. Chemical reduction-induced fabrication of graphene hybrid fibers for energy-dense wire-shaped supercapacitors[J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 1-10.
Minjie Shi, Hangtian Zhu, Cheng Yang, Jing Xu, Chao Yan. Chemical reduction-induced fabrication of graphene hybrid fibers for energy-dense wire-shaped supercapacitors[J]. 中国化学工程学报, 2022, 47(7): 1-10.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.05.045
[1] J. Shang, Q.Y. Huang, L. Wang, Y. Yang, P. Li, Z.J. Zheng, Soft hybrid scaffold (SHS) strategy for realization of ultrahigh energy density of wearable aqueous supercapacitors, Adv Mater 32(4)(2020) e1907088 [2] Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H, Application challenges in fiber and textile electronics, Adv Mater 32(5)(2020) e1901971.https://www.ncbi.nlm.nih.gov/pubmed/31273843/ [3] J.C. Luo, S.J. Gao, H. Luo, L. Wang, X.W. Huang, Z. Guo, X.J. Lai, L.W. Lin, R.K.Y. Li, J.F. Gao, Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics, Chem. Eng. J. 406(2021)126898.http://dx.doi.org/10.1016/j.cej.2020.126898 [4] Y. Han, Y.Z. Lu, S.H. Shen, Y. Zhong, S. Liu, X.H. Xia, Y.X. Tong, X.H. Lu, Enhancing the capacitive storage performance of carbon fiber textile by surface and structural modulation for advanced flexible asymmetric supercapacitors, Adv. Funct. Mater. 29(7)(2019)1806329.https://doi.org/10.1002/adfm.201806329 [5] Q.Y. Gui, L.X. Wu, Y.Y. Li, J.P. Liu, Scalable wire-type asymmetric pseudocapacitor achieving high volumetric energy/power densities and ultralong cycling stability of 100000 times, Adv Sci (Weinh)6(10)(2019)1802067.https://www.ncbi.nlm.nih.gov/pubmed/31131191/ [6] Z.H. Sun, A.B. Yuan, Electrochemical performance of nickel hydroxide/activated carbon supercapacitors using a modified polyvinyl alcohol based alkaline polymer electrolyte, Chin. J. Chem. Eng. 17(1)(2009)150-155.http://dx.doi.org/10.1016/S1004-9541(09)60047-1 [7] J.Y. Zhang, X.F. Yang, Y.B. He, Y.L. Bai, L.P. Kang, H. Xu, F. Shi, Z.B. Lei, Z.H. Liu, Δ-MnO2/holey graphene hybrid fiber for all-solid-state supercapacitor, J. Mater. Chem. A 4(23)(2016)9088-9096.https://doi.org/10.1039/c6ta02989b [8] W. Lan, X.T. Zhang, A.C. Zhai, W.Q. Meng, H.W. Sheng, W. Dou, C.F. Zhang, Q. Su, J.Y. Zhou, E.Q. Xie, Flexible CuO nanotube arrays composite electrodes for wire-shaped supercapacitors with robust electrochemical stability, Chem. Eng. J. 374(2019)181-188.http://dx.doi.org/10.1016/j.cej.2019.05.169 [9] A. Khan, R.A. Senthil, J.Q. Pan, Y.Z. Sun, A facile preparation of 3D flower-shaped Ni/Al-LDHs covered by β-Ni (OH)2 nanoplates as superior material for high power application, Chin. J. Chem. Eng. 27(10)(2019)2526-2534.http://dx.doi.org/10.1016/j.cjche.2019.01.025 [10] P.P. Li, D.Z. Zhang, Y.H. Xu, C.H. Ni, G. Shi, X.X. Sang, Nitrogen-doped hierarchical porous carbon from polyaniline/silica self-aggregates for supercapacitor, Chin. J. Chem. Eng. 27(3)(2019)709-716.http://dx.doi.org/10.1016/j.cjche.2018.09.014 [11] S.B. Chen, L. Wang, M.M. Huang, L.P. Kang, Z.B. Lei, H. Xu, F. Shi, Z.H. Liu, Reduced graphene oxide/Mn3O4 nanocrystals hybrid fiber for flexible all-solid-state supercapacitor with excellent volumetric energy density, Electrochimica Acta 242(2017)10-18.http://dx.doi.org/10.1016/j.electacta.2017.05.013 [12] M. Tebyetekerwa, I. Marriam, Z. Xu, S.Y. Yang, H. Zhang, F. Zabihi, R. Jose, S.J. Peng, M.F. Zhu, S. Ramakrishna, Critical insight:Challenges and requirements of fibre electrodes for wearable electrochemical energy storage, Energy Environ. Sci. 12(7)(2019)2148-2160.https://doi.org/10.1039/c8ee02607f [13] Y.X. Yu, G.P. Jin, Y.H. Fang, Z. Xu, X. Lü, C.N. Chen, Potential-aided recovery of iodide using 2-D nanosheet CuxO coating polymer/graphene/carbon fibers composite, Chin. J. Chem. Eng. 28(4)(2020)1046-1054.http://dx.doi.org/10.1016/j.cjche.2019.11.010 [14] Z.P. Yang, Y.H. Jia, Y.T. Niu, Z.Z. Yong, K.J. Wu, C.J. Zhang, M. Zhu, Y.Y. Zhang, Q.W. Li, Wet-spun PVDF nanofiber separator for direct fabrication of coaxial fiber-shaped supercapacitors, Chem. Eng. J. 400(2020)125835.http://dx.doi.org/10.1016/j.cej.2020.125835 [15] P. Song, J. Tao, X.M. He, Y.M. Sun, X.P. Shen, L.Z. Zhai, A.H. Yuan, D.Y. Zhang, Z.Y. Ji, B.L. Li, Silk-inspired stretchable fiber-shaped supercapacitors with ultrahigh volumetric capacitance and energy density for wearable electronics, Chem. Eng. J. 386(2020)124024.http://dx.doi.org/10.1016/j.cej.2020.124024 [16] Z. Lu, J. Foroughi, C.Y. Wang, H.R. Long, G.G. Wallace, Superelastic hybrid CNT/graphene fibers for wearable energy storage, Adv. Energy Mater. 8(8)(2018)1702047.https://doi.org/10.1002/aenm.201702047 [17] X.H. Zheng, Q.L. Hu, X.S. Zhou, W.Q. Nie, C.L. Li, N.Y. Yuan, Graphene-based fibers for the energy devices application:A comprehensive review, Mater. Des. 201(2021)109476.http://dx.doi.org/10.1016/j.matdes.2021.109476 [18] B. Fang, D. Chang, Z. Xu, C. Gao, A review on graphene fibers:Expectations, advances, and prospects, Adv Mater 32(5)(2020) e1902664 [19] G.Q. Xin, W.G. Zhu, Y.X. Deng, J. Cheng, L.T. Zhang, A.J. Chung, S. De, J. Lian, Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres, Nat Nanotechnol 14(2)(2019)168-175.https://www.ncbi.nlm.nih.gov/pubmed/30643269/ [20] Z. Xu, C. Gao, Graphene fiber:A new trend in carbon fibers, Mater. Today 18(9)(2015)480-492.http://dx.doi.org/10.1016/j.mattod.2015.06.009 [21] M. Lu, Z.Y. Zhang, L.P. Kang, X.X. He, Q. Li, J. Sun, R.B. Jiang, H. Xu, F. Shi, Z.B. Lei, Z.H. Liu, Intercalation and delamination behavior of Ti3C2Tx and MnO2/Ti3C2Tx/RGO flexible fibers with high volumetric capacitance, J. Mater. Chem. A 7(20)(2019)12582-12592.https://doi.org/10.1039/c9ta01993f [22] T. Xu, D.Z. Yang, Z.J. Fan, X.F. Li, Y.X. Liu, C. Guo, M. Zhang, Z.Z. Yu, Reduced graphene oxide/carbon nanotube hybrid fibers with narrowly distributed mesopores for flexible supercapacitors with high volumetric capacitances and satisfactory durability, Carbon 152(2019)134-143.http://dx.doi.org/10.1016/j.carbon.2019.06.005 [23] S.L. Zhai, C.J. Wang, H.E. Karahan, Y.Q. Wang, X.C. Chen, X. Sui, Q.W. Huang, X.Z. Liao, X. Wang, Y. Chen, Nano-RuO2-decorated holey graphene composite fibers for micro-supercapacitors with ultrahigh energy density, Small (2018) e1800582. https://www.ncbi.nlm.nih.gov/pubmed/29882370/ [24] L.L. Chen, Y. Liu, Y. Zhao, N. Chen, L.T. Qu, Graphene-based fibers for supercapacitor applications, Nanotechnology 27(3)(2016)032001.https://www.ncbi.nlm.nih.gov/pubmed/26655379/ [25] G. Wu, P.F. Tan, X.J. Wu, L. Peng, H.Y. Cheng, C.F. Wang, W. Chen, Z.Y. Yu, S. Chen, Wearable devices:High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes (adv. funct. mater. 36/2017), Adv. Funct. Mater. 27(36)(2017) adfm.201770215 [26] J.H. Li, J.Y. Li, L.F. Li, M. Yu, H.J. Ma, B.W. Zhang, Flexible graphene fibers prepared by chemical reduction-induced self-assembly, J. Mater. Chem. A 2(18)(2014)6359.https://doi.org/10.1039/c4ta00431k [27] G.X. Qu, J.L. Cheng, X.D. Li, D.M. Yuan, P.N. Chen, X.L. Chen, B. Wang, H.S. Peng, A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode, Adv Mater 28(19)(2016)3646-3652.https://www.ncbi.nlm.nih.gov/pubmed/27001216/ [28] Y.Y. Zheng, S.F. Ji, H.F. Liu, M. Li, H. Yang, Synthesis of mesoporous γ-AlOOH@Fe3O4 magnetic nanomicrospheres, Particuology 10(6)(2012)751-758.http://dx.doi.org/10.1016/j.partic.2012.04.003 [29] Z.X. Yang, K. Qian, J. Lv, W.H. Yan, J.H. Liu, J.W. Ai, Y.X. Zhang, T.L. Guo, X.T. Zhou, S. Xu, Z.P. Guo, Encapsulation of Fe3O4 nanoparticles into N, S co-doped graphene sheets with greatly enhanced electrochemical performance, Sci Rep 6(2016)27957.https://www.ncbi.nlm.nih.gov/pubmed/27296103/ [30] Y.P. Yew, K. Shameli, M. Miyake, N.B.B. Ahmad Khairudin, S.E.B. Mohamad, H. Hara, M.F.B. Mad Nordin, K.X. Lee, An eco-friendly means of biosynthesis of superparamagnetic magnetite nanoparticles via marine polymer, IEEE Trans. Nanotechnol. 16(6)(2017)1047-1052 [31] X.L. Wang, Y.G. Liu, H. Arandiyan, H.P. Yang, L. Bai, J. Mujtaba, Q.G. Wang, S.H. Liu, H.Y. Sun, Uniform Fe3O4 microflowers hierarchical structures assembled with porous nanoplates as superior anode materials for lithium-ion batteries, Appl. Surf. Sci. 389(2016)240-246.http://dx.doi.org/10.1016/j.apsusc.2016.07.105 [32] L. Pan, X.D. Zhu, X.M. Xie, Y.T. Liu, Smart hybridization of TiO2 nanorods and Fe3O4Nanoparticles with pristine graphene nanosheets:Hierarchically nanoengineered ternary heterostructures for high-rate lithium storage, Adv. Funct. Mater. 25(22)(2015)3341-3350.https://doi.org/10.1002/adfm.201404348 [33] F.F. Han, J. Xu, J. Zhou, J. Tang, W.H. Tang, Oxygen vacancy-engineered Fe2O3 nanoarrays as free-standing electrodes for flexible asymmetric supercapacitors, Nanoscale 11(26)(2019)12477-12483.https://www.ncbi.nlm.nih.gov/pubmed/31225562/ [34] S. Jain, J. Shah, N.S. Negi, C. Sharma, R.K. Kotnala, Significance of interface barrier at electrode of hematite hydroelectric cell for generating ecopower by water splitting, Int. J. Energy Res. 43(9)(2019)4743-4755.https://doi.org/10.1002/er.4613 [35] C.Y. Zhang, S. Liu, T.T. Chen, Z.H. Li, J.C. Hao, Oxygen vacancy-engineered Fe2O3 nanocubes via a task-specific ionic liquid for electrocatalytic N2 fixation, Chem Commun (Camb)55(51)(2019)7370-7373.https://www.ncbi.nlm.nih.gov/pubmed/31173021/ [36] X.Q. Cai, X.P. Shen, L.B. Ma, Z.Y. Ji, C. Xu, A.H. Yuan, Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor, Chem. Eng. J. 268(2015)251-259.http://dx.doi.org/10.1016/j.cej.2015.01.072 [37] A. Salman, S. Padmajan Sasikala, I.H. Kim, J.T. Kim, G.S. Lee, J.G. Kim, S.O. Kim, Tungsten nitride-coated graphene fibers for high-performance wearable supercapacitors, Nanoscale 12(39)(2020)20239-20249.https://www.ncbi.nlm.nih.gov/pubmed/33026025/ [38] Y.K. Zhang, Z. Sun, H. Wang, Y.D. Wang, M. Liang, S. Xue, Nitrogen-doped graphene as a cathode material for dye-sensitized solar cells:Effects of hydrothermal reaction and annealing on electrocatalytic performance, RSC Adv. 5(14)(2015)10430-10439.https://doi.org/10.1039/c4ra13224f [39] C.H. Lu, J. Meng, J. Zhang, X.Y. Chen, M.Z. Du, Y.P. Chen, C.Y. Hou, J.L. Wang, A.Q. Ju, X.H. Wang, Y.P. Qiu, S.R. Wang, K. Zhang, Correction to"three-dimensional hierarchically porous graphene fiber-shaped supercapacitors with high specific capacitance and rate capability″, ACS Appl Mater Interfaces 11(34)(2019)31573.https://www.ncbi.nlm.nih.gov/pubmed/31418259/ [40] Y.C. Liu, N. Zhang, L.F. Jiao, J. Chen, Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries, Adv Mater 27(42)(2015)6702-6707.https://www.ncbi.nlm.nih.gov/pubmed/26422696/ [41] X.D. Li, Y. Feng, M.C. Li, W. Li, H. Wei, D.D. Song, Smart hybrids of Zn2GeO4 nanoparticles and ultrathin g-C3N4 Layers:Synergistic lithium storage and excellent electrochemical performance, Adv. Funct. Mater. 25(44)(2015)6858-6866.https://doi.org/10.1002/adfm.201502938 [42] C. Yang, M.N. Han, H.H. Yan, F. Li, M.J. Shi, L.P. Zhao, In-situ probing phase evolution and electrochemical mechanism of ZnMn2O4 nanoparticles anchored on porous carbon polyhedrons in high-performance aqueous Zn-ion batteries, J. Power Sources 452(2020)227826.http://dx.doi.org/10.1016/j.jpowsour.2020.227826 [43] Y.J. Chen, Z.E. Liu, L. Sun, Z.W. Lu, K.L. Zhuo, Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte, J. Power Sources 390(2018)215-223.http://dx.doi.org/10.1016/j.jpowsour.2018.04.057 [44] B.S. Shen, R.S. Guo, J.W. Lang, L. Liu, L.Y. Liu, X.B. Yan, A high-temperature flexible supercapacitor based on pseudocapacitive behavio r of FeOOH in an ionic liquid electrolyte, J. Mater. Chem. A 4(21)(2016)8316-8327.https://doi.org/10.1039/c6ta01734g [45] M.J. Shi, P. Xiao, J.W. Lang, C. Yan, X.B. Yan, Porous g-C3N4 and MXene dual-confined FeOOH quantum dots for superior energy storage in an ionic liquid, Adv. Sci. 7(2)(2020)1901975.https://doi.org/10.1002/advs.201901975 [46] S.X. Sun, J.W. Lang, R.T. Wang, L.B. Kong, X.C. Li, X.B. Yan, Identifying pseudocapacitance of Fe2O3 in an ionic liquid and its application in asymmetric supercapacitors, J. Mater. Chem. A 2(35)(2014)14550-14556.https://doi.org/10.1039/c4ta02026j [47] X.T. Ding, Y. Zhao, C.G. Hu, Y. Hu, Z.L. Dong, N. Chen, Z.P. Zhang, L.T. Qu, Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors, J. Mater. Chem. A 2(31)(2014)12355.https://doi.org/10.1039/c4ta01230e [48] W.J. Ma, S.H. Chen, S.Y. Yang, W.P. Chen, Y.H. Cheng, Y.W. Guo, S.J. Peng, S. Ramakrishna, M.F. Zhu, Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors, J. Power Sources 306(2016)481-488.http://dx.doi.org/10.1016/j.jpowsour.2015.12.063 [49] G.Z. Sun, J.Q. Liu, X. Zhang, X.W. Wang, H. Li, Y. Yu, W. Huang, H. Zhang, P. Chen, Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors, Angew. Chem. 126(46)(2014)12784-12788.https://doi.org/10.1002/ange.201405325 [50] S.L. Wang, N.S. Liu, J. Su, L.Y. Li, F. Long, Z.G. Zou, X.L. Jiang, Y.H. Gao, Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs, ACS Nano 11(2)(2017)2066-2074.https://www.ncbi.nlm.nih.gov/pubmed/28112894/ |
[1] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[2] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[3] | Chen Chen, Qiong Tang, Hong Xu, Mingxing Tang, Xuekuan Li, Lei Liu, Jinxiang Dong. Alkyl-tetralin base oils synthesized from coal-based chemicals and evaluation of their lubricating properties [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 20-28. |
[4] | Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 355-363. |
[5] | Xiongzhuo Zhu, Dali Gao, Chong Yang, Chunjie Yang. A blast furnace fault monitoring algorithm with low false alarm rate: Ensemble of greedy dynamic principal component analysis-Gaussian mixture model [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 151-161. |
[6] | Jialei Sha, Chenyi Liu, Zhihong Ma, Weizhong Zheng, Weizhen Sun, Ling Zhao. Understanding the interfacial behaviors of benzene alkylation with butene using chloroaluminate ionic liquid catalyst: A molecular dynamics simulation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 44-52. |
[7] | Yifeng Chen, Hang Yu, Jingjing Chen, Xiaohua Lu, Xiaoyan Ji. Viscous behavior of 1-hexyl-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/polyethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 280-287. |
[8] | Mi Feng, Bin He, Xinyan Chen, Junli Xu, Xingmei Lu, Cai Jia, Jian Sun. Separation of chitin from shrimp shells enabled by transition metal salt aqueous solution and ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 133-141. |
[9] | Qingming Ma, Jianhong Xu. Green microfluidics in microchemical engineering for carbon neutrality [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 332-345. |
[10] | Xinqiang You, Kai Zhao, Ling Li, Ting Qiu. Ionic liquids as entrainer in extractive distillation for effectively separating 1-propanol–water azeotropic mixture [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 224-233. |
[11] | Song Hu, Jinlong Li, Qihua Wang, Weisheng Yang. Design and optimization of an integrated process for the purification of propylene oxide and the separation of propylene glycol by-product [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 111-120. |
[12] | Alireza Afsharpour. A new approach for correlating of H2S solubility in [emim][Lac], [bmim][ac] and [emim][pro] ionic liquids using two-parts combined models [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 521-527. |
[13] | Haiyan Jiang, Lu Bai, Bingbing Yang, Shaojuan Zeng, Haifeng Dong, Xiangping Zhang. The effect of protic ionic liquids incorporation on CO2 separation performance of Pebax-based membranes [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 169-176. |
[14] | Wenjie Xiong, Mingzhen Shi, Yan Lu, Xiaomin Zhang, Xingbang Hu, Zhuoheng Tu, Youting Wu. Efficient conversion of H2S into mercaptan alcohol by tertiary-amine functionalized ionic liquids [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 197-204. |
[15] | Yuxin Wu, Zhuo Chen, Xiaohui Zhang, Jian Chen, Yundong Wang, Jianhong Xu. Kinetic study of CO2 fixation into propylene carbonate with water as efficient medium using microreaction system [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 247-253. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||