[1] D. Chung, S.Y. Kim, J.H. Ahn, Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli, Sci. Rep. 7(2017)2578 [2] P. Dewapriya, Y.X. Li, S.W.A. Himaya, S.K. Kim, Isolation and characterization of marine-derived Mucor sp. for the fermentative production of tyrosol, Process Biochem. 49(2014)1402-1408 [3] H. Soejima, K. Tsuge, T. Yoshimura, K. Sawada, H. Kitagaki, Breeding of a high tyrosol-producing sake yeast by isolation of an ethanol-resistant mutant from a trp3 mutant, J. Inst. Brew. 118(2012)264-268 [4] L.R. Silva, P.B. Andrade, P. Valentão, R.M. Seabra, M.E. Trujillo, E. Velázquez, Analysis of non-coloured phenolics in red wine:Effect of Dekkera bruxellensis yeast, Food Chem. 89(2005)185-189 [5] W. Guo, Q. Huang, H. Liu, S. Hou, S. Niu, Y. Jiang, X. Bao, Y. Shen, X. Fang, Rational engineering of chorismate-related pathways in Saccharomyces cerevisiae for improving tyrosol production, Front. Bioeng. Biotechnol. 7(2019)152 [6] H. Yang, Y. Xue, C. Yang, W. Shen, Y. Fan, X. Chen, Modular engineering of tyrosol production in Escherichia coli, J. Agric. Food Chem. 67(2019)3900-3908 [7] H.M. Woodburn, C.F. Stuntz, The synthesis of β-(3-amino-4-hydroxyphenyl)-ethanol; 3-aminotyrosol, J. Am. Chem. Soc. 72(1950)1361-1364 [8] S.E. Yoo, Y.D. Gong, M.Y. Choi, J. Seo, A new vinyl ether type linker for solid-phase synthesis, Tetrahedron Lett. 41(2000)6415-6418 [9] S. Yamada,T. Fujii, K. Takagi, Y. Gomi, Preparation of tyrosol and 4-methoxyphenethyl alcohol, Chem. Pharm. Bull. 11(1963)258-260 [10] S. Sentheshanmuganathan, S.R. Elsden, The mechanism of the formation of tyrosol by Saccharomyces cerevisiae, J. Biochem. 69(1958)210-218 [11] J. Jiang, H. Yin, S. Wang, Y. Zhuang, S. Liu, T. Liu, Y. Ma, Metabolic engineering of Saccharomyces cerevisiae for high-level production of salidroside from glucose, J. Agric. Food Chem. 66(2018)4431-4438 [12] W. Guo, Q. Huang, Y. Feng, T. Tan, S. Niu, S. Hou, Z. Chen, Z.Q. Du, Y. Shen, X. Fang, Rewiring central carbon metabolism for tyrosol and salidroside production in Saccharomyces cerevisiae, Biotechnol. Bioeng. 117(2020)2410-2419 [13] H. Liu, Y. Tian, Y. Zhou, Y. Kan, T. Wu, W. Xiao, Y. Luo, Multi-modular engineering of Saccharomyces cerevisiae for high-titre production of tyrosol and salidroside, Microb. Biotechnol.(2020)1-12 [14] Y. Satoh, K. Tajima, M. Munekata, J.D. Keasling, T.S. Lee, Engineering of a tyrosol-producing pathway, utilizing simple sugar and the central metabolic tyrosine, in Escherichia coli, J. Agric. Food Chem. 60(2012)979-984 [15] L.A. Hazelwood, J.M. Daran, A.J.A. Van Maris, J.T. Pronk, J.R. Dickinson, The Ehrlich pathway for fusel alcohol production:A century of research on Saccharomyces cerevisiae metabolism, Appl. Environ. Microbiol. 74(2008)2259-2266 [16] Y. Kaminaga, J. Schnepp, G. Peel, C.M. Kish, G. Ben-Nissan, Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation, J. Biol. Chem. 281(2006)23357-23366 [17] Y. Xue, X. Chen, C. Yang, J. Chang, W. Shen, Y. Fan, Engineering Eschericha coli for enhanced tyrosol production, J. Agric. Food Chem. 65(2017)4708-4714 [18] C. Yang, X. Chen, J. Chang, L. Zhang, W. Xu, W. Shen, Y. Fan, Reconstruction of tyrosol synthetic pathways in Escherichia coli, Chinese J. Chem. Eng. 26(2018)2615-2621 [19] W. Xu, C. Yang, Y. Xia, L. Zhang, C. Liu, H. Yang, W. Shen, X. Chen, High-level production of tyrosol with noninduced recombinant Escherichia coli by metabolic engineering, J. Agric. Food Chem. 68(2020)4616-4623 [20] Z. Mao, L. Liu, Y. Zhang, J. Yuan, Efficient synthesis of phenylacetate and 2-phenylethanol by modular cascade biocatalysis, ChemBioChem 21(2020)2676-2679 [21] F. Zhu, X. Zhong, M. Hu, L. Lu, Z. Deng, T. Liu, In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli, Biotechnol. Bioeng. 111(2014)1396-1405 [22] C. Li, P. Jia, Y. Bai, T.P. Fan, X. Zheng, Y. Cai, Efficient synthesis of hydroxytyrosol from L-3,4-dihydroxyphenylalanine using engineered Escherichia coli whole cells, J. Agric. Food Chem. 67(2019)6867-6873 [23] G. Molla, R. Melis, L. Pollegioni, Breaking the mirror:L-amino acid deaminase, a novel stereoselective biocatalyst, Biotechnol. Adv. 35(2017)657-668 [24] C. Rodriguez, I. Lavandera, V. Gotor, Recent advances in cofactor regeneration systems applied to biocatalyzed oxidative processes, Curr. Org. Chem. 16(2012)2525-2541 [25] J. Wu, G. Du, J. Zhou, J. Chen, Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy, Metab. Eng. 16(2013)48-55 [26] J. Wang, W. Song, J. Wu, J. Liu, X. Chen, L. Liu, Efficient production of phenylpropionic acids by an amino-group-transformation biocatalytic cascade, Biotechnol. Bioeng. 117(2020)614-625 [27] B.R. Lukito, S. Wu, H.J.J. Saw, Z. Li, One-pot production of natural 2-phenylethanol from L-phenylalanine via cascade biotransformations, ChemCatChem 11(2019)831-840 [28] J. Yao, Y. He, N. Su, S.R. Bharath, Y. Tao, J.M. Jin, W. Chen, H. Song, S.Y. Tang, Developing a highly efficient hydroxytyrosol whole-cell catalyst by de-bottlenecking rate-limiting steps, Nat. Commun. 11(2020)1-12 [29] Y. Qian, J. Liu, W. Song, X. Chen, Q. Luo, L. Liu, Production of β-alanine from fumaric acid using a dual-enzyme cascade, ChemCatChem 10(2018)4998-5005 [30] J.J. Lucchini, J. Corre, A. Cremieux, Antibacterial activity of phenolic compounds and aromatic alcohols, Res. Microbiol. 141(1990)499-510 [31] S.H. Liu, I.H. Pan, I.M. Chu, Inhibitory effect of p-hydroxybenzyl alcohol on tyrosinase activity and melanogenesis, Biol. Pharm. Bull. 30(2007)1135-1139 [32] A.G. Santos, T.L. de Albuquerque, B.D. Ribeiro, M.A.Z. Coelho, In situ product recovery techniques aiming to obtain biotechnological products:A glance to current knowledge, Biotechnol. Appl. Biochem.(2020)1-14 [33] M.E. Hong, K.S. Lee, B.J. Yu, Y.J. Sung, S.M. Park, H.M. Koo, Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering, J. Biotechnol. 149(2010)52-59 [34] D. Hua, S. Lin, Y. Li, H. Chen, Z. Zhang, Y. Du, X. Zhang, P. Xu, Enhanced 2-phenylethanol production from L-phenylalanine via in situ product adsorption, Biocatal. Biotransfor. 28(2010)259-266 [35] D.R. Nielsen, K.J. Prather, In situ product recovery of n-butanol using polymeric resins, Biotechnol. Bioeng. 102(2009)811-821 |