Chinese Journal of Chemical Engineering ›› 2023, Vol. 54 ›› Issue (2): 215-231.DOI: 10.1016/j.cjche.2022.03.017
Previous Articles Next Articles
Zhongyao Zhang, Ming Gao, Xiaopeng Chen, Xiaojie Wei, Jiezhen Liang, Chenghong Wu, Linlin Wang
Received:
2021-12-07
Revised:
2022-02-27
Online:
2023-05-11
Published:
2023-02-28
Contact:
Linlin Wang,E-mail:wanglinlin@gxu.edu.cn
Supported by:
Zhongyao Zhang, Ming Gao, Xiaopeng Chen, Xiaojie Wei, Jiezhen Liang, Chenghong Wu, Linlin Wang
通讯作者:
Linlin Wang,E-mail:wanglinlin@gxu.edu.cn
基金资助:
Zhongyao Zhang, Ming Gao, Xiaopeng Chen, Xiaojie Wei, Jiezhen Liang, Chenghong Wu, Linlin Wang. The Joule–Thomson effect of (CO2 + H2) binary system relevant to gas switching reforming with carbon capture and storage (CCS)[J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 215-231.
Zhongyao Zhang, Ming Gao, Xiaopeng Chen, Xiaojie Wei, Jiezhen Liang, Chenghong Wu, Linlin Wang. The Joule–Thomson effect of (CO2 + H2) binary system relevant to gas switching reforming with carbon capture and storage (CCS)[J]. 中国化学工程学报, 2023, 54(2): 215-231.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.03.017
[1] G.P. Hu, K.H. Smith, Y. Wu, K.A. Mumford, S.E. Kentish, G.W. Stevens, Carbon dioxide capture by solvent absorption using amino acids: a review, Chin. J. Chem. Eng. 26 (11) (2018) 2229–2237. http://dx.doi.org/10.1016/j.cjche.2018.08.003 [2] G.P. Hu, K.H. Smith, Y. Wu, K.A. Mumford, S.E. Kentish, G.W. Stevens, Carbon dioxide capture by solvent absorption using amino acids: a review, Chin. J. Chem. Eng. 26 (11) (2018) 2229–2237. http://dx.doi.org/10.1016/j.cjche.2018.08.003 [3] A. Ghanbari, R. Khordad, Influence of potential attraction term on Joule-Thomson coefficient, enthalpy and entropy of real gases, Phys. B Condens. Matter 624 (2022) 413418. http://dx.doi.org/10.1016/j.physb.2021.413418 [4] J.F. Li, B. Yu, Gas properties, fundamental equations of state and phase relationships. Sustainable Natural Gas Reservoir and Production Engineering. Elsevier, Amsterdam, 2022(1–28). https://doi.org/10.1016/b978-0-12-824495-1.00004-8 [5] A. Ugwu, A. Zaabout, S. Amini, An advancement in CO2 utilization through novel gas switching dry reforming, Int. J. Greenh. Gas Control 90 (2019) 102791. http://dx.doi.org/10.1016/j.ijggc.2019.102791 [6] S. Cloete, L. Hirth, Flexible power and hydrogen production: finding synergy between CCS and variable renewables, Energy 192 (2020) 116671. http://dx.doi.org/10.1016/j.energy.2019.116671 [7] Voldsund, M., Jordal, K., Anantharaman, R. Hydrogen production with CO2 capture, Int J Hydrogen Energ, 41(9)(2016)4969-4992. [8] H. Yu, Recent developments in aqueous ammonia-based post-combustion CO2 capture technologies, Chin. J. Chem. Eng. 26 (11) (2018) 2255–2265. http://dx.doi.org/10.1016/j.cjche.2018.05.024 [9] S.T. Munkejord, M. Hammer, S.W. Løvseth, CO2 transport: data and models–A review, Appl. Energy 169 (2016) 499–523. http://dx.doi.org/10.1016/J.APENERGY.2016.01.100 [10] Sanchez-Vicente, Y., Drage, T.C., Poliakoff, M., Ke, J., George, M.W. Densities of the carbon dioxide+ hydrogen, a system of relevance to carbon capture and storage, Int J Greenh Gas Con, 13 (2013)78-86. [11] O. Fandiño, J.P.M. Trusler, D. Vega-Maza, Phase behavior of (CO2 + H2) and (CO2 + N2) at temperatures between (218.15 and 303.15) K at pressures up to 15 MPa, Int. J. Greenh. Gas Control 36 (2015) 78–92. http://dx.doi.org/10.1016/j.ijggc.2015.02.018 [12] C.Y. Tsang, W.B. Street, Phase equilibria in the H2/CO2 system at temperatures from 220 to 290 K and pressures to 172 MPa, Chem. Eng. Sci. 36 (6) (1981) 993–1000. http://dx.doi.org/10.1016/0009-2509(81)80085-1 [13] H. Mahgerefteh, S. Brown, S. Martynov, A study of the effects of friction, heat transfer, and stream impurities on the decompression behavior in CO2 pipelines, Greenh. Gases Sci. Technol. 2 (5) (2012) 369–379. http://dx.doi.org/10.1002/ghg.1302 [14] H.L. Li, Ø. Wilhelmsen, Y.X. Lv, W.L. Wang, J.Y. Yan, Viscosities, thermal conductivities and diffusion coefficients of CO2 mixtures: review of experimental data and theoretical models, Int. J. Greenh. Gas Control 5 (5) (2011) 1119–1139. http://dx.doi.org/10.1016/j.ijggc.2011.07.009 [15] Y.X. Li, S.W. Gu, D.T. Zhang, Q.H. Hu, L. Teng, C.L. Wang, An experimental study on the choked flow characteristics of CO2 pipelines in various phases, Chin. J. Chem. Eng. 32 (2021) 17–26. http://dx.doi.org/10.1016/j.cjche.2020.09.068 [16] V.A.V.L. Chodankar, Aswatha, K.N. Seetharamu, Improved effectiveness of a cryogenic counter-current parallel flow - Three fluid heat exchanger with three thermal communication due to Joule Thomson pressure drop, Int. J. Therm. Sci. 172 (2022) 107267. http://dx.doi.org/10.1016/j.ijthermalsci.2021.107267 [17] Atkins, P., Overton, T. Shriver and Atkins' inorganic chemistry, Oxford University Press, USA, 2010. [18] K.H. Han, S.P. Noh, I.K. Hong, K.A. Park, Cooling domain prediction of HFCs and HCFCs refrigerant with Joule-Thomson coefficient, J. Ind. Eng. Chem. 18 (2) (2012) 617–622. http://dx.doi.org/10.1016/j.jiec.2011.11.073 [19] R.A. Pierotti, T.R. Rybolt, Statistical thermodynamics of aerosols and the gas-solid Joule-Thomson effect, J. Chem. Phys. 80 (8) (1984) 3826–3830. http://dx.doi.org/10.1063/1.447163 [20] I. Marić, The Joule-Thomson effect in natural gas flow-rate measurements, Flow Meas. Instrum. 16 (6) (2005) 387–395. http://dx.doi.org/10.1016/j.flowmeasinst.2005.04.006 [21] B. Gimeno, M. Artal, I. Velasco, S.T. Blanco, J. Fernández, Influence of SO2 on CO2 storage for CCS technology: evaluation of CO2/SO2 co-capture, Appl. Energy 206 (2017) 172–180. http://dx.doi.org/10.1016/j.apenergy.2017.08.048 [22] Z. Ziabakhsh-Ganji, H. Kooi, Sensitivity of Joule-Thomson cooling to impure CO2 injection in depleted gas reservoirs, Appl. Energy 113 (2014) 434–451. http://dx.doi.org/10.1016/j.apenergy.2013.07.059 [23] D. Loeve, C. Hofstee, J.G. Maas, Thermal effects in a depleted gas field by cold CO2 injection in the presence of methane, Energy Procedia 63 (2014) 5378–5393. http://dx.doi.org/10.1016/j.egypro.2014.11.569 [24] F. Kazemifar, D.C. Kyritsis, Experimental investigation of near-critical CO2 tube-flow and Joule-Thompson throttling for carbon capture and sequestration, Exp. Therm. Fluid Sci. 53 (2014) 161–170. http://dx.doi.org/10.1016/j.expthermflusci.2013.11.026 [25] J.X. Chen, M. Veenstra, J. Purewal, B. Hobein, S. Papasavva, Modeling a hydrogen pressure regulator in a fuel cell system with Joule-Thomson effect, Int. J. Hydrog. Energy 44 (2) (2019) 1272–1287. http://dx.doi.org/10.1016/j.ijhydene.2018.11.020 [26] A. Hosseini, A. Khoshsima, Evaluation of translated-consistent equations of state compared for the prediction of the Joule-Thomson effect at high pressures and high temperatures, Fluid Phase Equilibria 523 (2020) 112775. http://dx.doi.org/10.1016/j.fluid.2020.112775 [27] J.H. Perry, The joule-Thomson effect for helium, J. Phys. Chem. 28 (10) (1924) 1108–1112. https://doi.org/10.1021/j150244a009 [28] T. Regueira, F. Varzandeh, E.H. Stenby, W. Yan, Heat capacity and Joule-Thomson coefficient of selected n-alkanes at 0.1 and 10 MPa in broad temperature ranges, J. Chem. Thermodyn. 111 (2017) 250–264. http://dx.doi.org/10.1016/j.jct.2017.03.034 [29] J.T. Wang, Z.Y. Wang, B.J. Sun, Improved equation of CO2 Joule-Thomson coefficient, J. CO2 Util. 19 (2017) 296–307. http://dx.doi.org/10.1016/j.jcou.2017.04.007 [30] J.R. Roebuck, T.A. Murrell, E.E. Miller, The joule-Thomson effect in carbon dioxide, J. Am. Chem. Soc. 64 (2) (1942) 400–411. http://dx.doi.org/10.1021/ja01254a048 [31] D. Price, Thermodynamic functions of carbon dioxide. joule-Thomson coefficient, isochoric heat capacity, and isentropic behavior at 100℃ to 1000° C. and 50 to 1400 bars, Ind. Eng. Chem. Chem. Eng. Data Series 1 (1) (1956) 83–86. https://doi.org/10.1021/i460001a016 [32] S.R. de Groot, A. Michels, The Joule—Thomson effect and the specific heat at constant pressure of carbon dioxide, Physica 14 (4) (1948) 218–222. http://dx.doi.org/10.1016/0031-8914(48)90039-1 [33] H.J. Ng, A.E. Mather, Isothermal Joule-Thomson coefficients in mixtures of methane and carbon dioxide, J. Chem. Eng. Data 21 (3) (1976) 291–295. http://dx.doi.org/10.1021/je60070a001 [34] J.P. Strakey, C.O. Bennett, B.F. Dodge, Joule-Thomson coefficients of argon-carbon dioxide mixtures, AIChE J. 20 (4) (1974) 803–814. https://doi.org/10.1002/aic.690200423 [35] R. Ayber, Joule-Thomson effect in hydrogen-methane mixtures at temperatures between—35 and +40°. Progress in Refrigeration Science and Technology. Amsterdam: Elsevier, 1965: 311–318. https://doi.org/10.1016/b978-1-4831-9857-6.50061-3 [36] R.E. Randelman, L.A. Wenzel, Joule-Thomson coefficients of hydrogen and methane mixtures, J. Chem. Eng. Data 33 (3) (1988) 293–299. https://doi.org/10.1021/je00053a021 [37] S.N. Shoghl, A. Naderifar, F. Farhadi, G. Pazuki, Prediction of Joule-Thomson coefficient and inversion curve for natural gas and its components using CFD modeling, J. Nat. Gas Sci. Eng. 83 (2020) 103570. http://dx.doi.org/10.1016/j.jngse.2020.103570 [38] Poling, B.E., Prausnitz, J.M., O Connell, J.P. Properties of Gases and Liquids, McGraw-Hill Education, New York, 2001. [39] R. Span, W. Wagner, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, J. Phys. Chem. Ref. Data 25 (6) (1996) 1509–1596. http://dx.doi.org/10.1063/1.555991 [40] D.V. Nichita, C.F. Leibovici, Calculation of Joule-Thomson inversion curves for two-phase mixtures, Fluid Phase Equilibria 246 (1–2) (2006) 167–176. http://dx.doi.org/10.1016/j.fluid.2006.05.025 [41] Lemmon, E.W., Huber, M.L., Mclinden, M.O. Nist Standard Reference Database 23: Refprop Version 9.0, National Institute of Standards and Technology Boulder, Colorado, 2002. [42] Joint Committee for, Guides in Metrology, Evaluation of measurement data—Guide to the expression of the uncertainty in measurement (GUM 1995 with minor corrections), Joint Committee for Guides in, Metrology (2008). [43] R.C. Ahlert, L.A. Wenzel, Joule-Thomson effects in gas mixtures: the nitrogen-methane-ethane system, AIChE J. 15 (2) (1969) 256–263. http://dx.doi.org/10.1002/aic.690150224 [44] M.X. Li, Y.F. Bai, C.Z. Zhang, Y.X. Song, S.F. Jiang, D. Grouset, M.J. Zhang, Review on the research of hydrogen storage system fast refueling in fuel cell vehicle, Int. J. Hydrog. Energy 44 (21) (2019) 10677–10693. http://dx.doi.org/10.1016/j.ijhydene.2019.02.208 [45] M. Striednig, S. Brandstätter, M. Sartory, M. Klell, Thermodynamic real gas analysis of a tank filling process, Int. J. Hydrog. Energy 39 (16) (2014) 8495–8509. http://dx.doi.org/10.1016/j.ijhydene.2014.03.028 [46] Y. Kim, D. Shin, C. Kim, On-board cold thermal energy storage system for hydrogen fueling process, Energies 12 (3) (2019) 561. https://doi.org/10.3390/en12030561 [47] M. Kanniche, R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J.M. Amann, C. Bouallou, Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture, Appl. Therm. Eng. 30 (1) (2010) 53–62. http://dx.doi.org/10.1016/j.applthermaleng.2009.05.005 [48] N.S. Siefert, S. Litster, Exergy and economic analyses of advanced IGCC-CCS and IGFC-CCS power plants, Appl. Energy 107 (2013) 315–328. http://dx.doi.org/10.1016/j.apenergy.2013.02.006 [49] G.P. Hu, K.H. Smith, Y. Wu, K.A. Mumford, S.E. Kentish, G.W. Stevens, Carbon dioxide capture by solvent absorption using amino acids: a review, Chin. J. Chem. Eng. 26 (11) (2018) 2229–2237. http://dx.doi.org/10.1016/j.cjche.2018.08.003 [50] U.K. Deiters, I.H. Bell, Unphysical critical curves of binary mixtures predicted with GERG models, Int. J. Thermophys. 41 (12) (2020) 1–19. http://dx.doi.org/10.1007/s10765-020-02743-3 [51] O. Redlich, J.N.S. Kwong, On the thermodynamics of solutions. V. an equation of state. fugacities of gaseous solutions, Chem. Rev. 44 (1) (1949) 233–244. https://doi.org/10.1021/cr60137a013 [52] G.M. Wilson, Calculation of enthalpy data from a modified redlich-kwong equation of state. Advances in Cryogenic Engineering. Boston, MA: Springer US, 1966: 392–400. https://doi.org/10.1007/978-1-4757-0522-5_43 [53] C.H. Twu, J.E. Coon, J.R. Cunningham, A new generalized alpha function for a cubic equation of state Part 1. Peng-Robinson equation, Fluid Phase Equilibria 105 (1) (1995) 49–59. http://dx.doi.org/10.1016/0378-3812(94)02601-V [54] K.E. Starling, M.S. Han, Thermo data refined for LPG. Pt. 15. Industrial applications, Hydrocarbon Process, 51(6) (1972)107-115. [55] O. Kunz, W. Wagner, The GERG-2008 wide-range equation of state for natural gases and other mixtures: an expansion of GERG-2004, J. Chem. Eng. Data 57 (11) (2012) 3032–3091. http://dx.doi.org/10.1021/je300655b [56] X.X. Yang, M. Richter, Z. Wang, Z. Li, Density measurements on binary mixtures (nitrogen + carbon dioxide and argon + carbon dioxide) at temperatures from (298.15 to 423.15) K with pressures from (11 to 31) MPa using a single-sinker densimeter, J. Chem. Thermodyn. 91 (2015) 17–29. http://dx.doi.org/10.1016/j.jct.2015.07.014 [57] Lozano-Martin, D., Martín, M.C., Chamorro, C.R., Tuma, D., Segovia, J.J. Speed of sound for three binary (CH4+ H2) mixtures from p=(0.5 up to 20) MPa at T=(273.16 to 375) K, Int J Hydrogen Energ, 45(7) (2020)4765-4783. [58] J. Ke, N. Suleiman, Y. Sanchez-Vicente, T.S. Murphy, J. Rodriguez, A. Ramos, M. Poliakoff, M.W. George, The phase equilibrium and density studies of the ternary mixtures of CO2 + Ar + N2 and CO2 + Ar + H2, systems relevance to CCS technology, Int. J. Greenh. Gas Control 56 (2017) 55–66. http://dx.doi.org/10.1016/j.ijggc.2016.11.003 [59] Deiters, U.K. Comments on the modeling of hydrogen and hydrogen-containing mixtures with cubic equations of state, Fluid Phase Equilibr, 352, (2013)93-96. [60] Coquelet, C., Chapoy, A., Richon, D. Development of a new alpha function for the Peng–Robinson equation of state: comparative study of alpha function models for pure gases (natural gas components) and water-gas systems, Int J Thermophys, 25(1), (2004)133-158. [61] F. Varzandeh, E.H. Stenby, W. Yan, Comparison of GERG-2008 and simpler EoS models in calculation of phase equilibrium and physical properties of natural gas related systems, Fluid Phase Equilibria 434 (2017) 21–43. http://dx.doi.org/10.1016/j.fluid.2016.11.016 [62] N.S. Matin, B. Haghighi, Calculation of the Joule-Thomson inversion curves from cubic equations of state, Fluid Phase Equilibria 175 (1–2) (2000) 273–284. http://dx.doi.org/10.1016/S0378-3812(00)00443-X [63] A. Ugwu, A. Zaabout, J.R. Tolchard, P.I. Dahl, S. Amini, Gas Switching Reforming for syngas production with iron-based oxygen carrier-the performance under pressurized conditions, Int. J. Hydrog. Energy 45 (2) (2020) 1267–1282. http://dx.doi.org/10.1016/j.ijhydene.2019.03.191 |
[1] | Chaojie Li, Xianxin Fang, Meiling Sun, Jihai Duan, Weiwen Wang. Study on two-phase cloud dispersion from liquefied CO2 release [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 37-45. |
[2] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[3] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[4] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[5] | Hae-Kyun Park, Dong-Hyuk Park, Bum-Jin Chung. Influence of the electrolyte conductivity on the critical current density and the breakdown voltage [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 169-175. |
[6] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[7] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[8] | Bin Gao, Junwen Chen, Qi Zuo, Hongyan Wang, Wenlin Li. The critical role of Zr in controlling the activity of Pd/Beta on the hydrogenation of phenol to cyclohexanone [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 79-87. |
[9] | Yunchang Fan, Chunyan Zhu, Sheli Zhang, Lei Zhang, Qiang Wang, Feng Wang. Efficient and selective extraction of sinomenine by deep eutectic solvents [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 109-117. |
[10] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 141-150. |
[11] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[12] | Chao Yang, Zhelin Su, Yeshuang Wang, Huiling Fan, Meisheng Liang, Zhaohui Chen. Insight into the effect of gel drying temperature on the structure and desulfurization performance of ZnO/SiO2 adsorbents [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 233-241. |
[13] | Tatyana P. Adamova, Sergey S. Skiba, Andrey Yu. Manakov, Sergey Y. Misyura. Growth rate of CO2 hydrate film on water–oil and water–gaseous CO2 interface [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 266-272. |
[14] | Qiaoqiao Liu, Guihong Lin, Jian Zhou, Liangliang Huang, Chang Liu. Hydrogen-bond mediated and concentrate-dependent NaHCO3 crystal morphology in NaHCO3–Na2CO3 aqueous solution: Experiments and computer simulations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 49-58. |
[15] | Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 202-211. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||