Chinese Journal of Chemical Engineering ›› 2023, Vol. 54 ›› Issue (2): 280-287.DOI: 10.1016/j.cjche.2022.03.015
Previous Articles Next Articles
Yifeng Chen1,2, Hang Yu1, Jingjing Chen1, Xiaohua Lu1, Xiaoyan Ji2
Received:
2021-12-03
Revised:
2022-03-02
Online:
2023-05-11
Published:
2023-02-28
Contact:
Xiaohua Lu,E-mail:xhlu@njtech.edu.cn;Xiaoyan Ji,E-mail:xiaoyan.ji@ltu.se
Supported by:
Yifeng Chen1,2, Hang Yu1, Jingjing Chen1, Xiaohua Lu1, Xiaoyan Ji2
通讯作者:
Xiaohua Lu,E-mail:xhlu@njtech.edu.cn;Xiaoyan Ji,E-mail:xiaoyan.ji@ltu.se
基金资助:
Yifeng Chen, Hang Yu, Jingjing Chen, Xiaohua Lu, Xiaoyan Ji. Viscous behavior of 1-hexyl-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/polyethylene glycol[J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 280-287.
Yifeng Chen, Hang Yu, Jingjing Chen, Xiaohua Lu, Xiaoyan Ji. Viscous behavior of 1-hexyl-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/polyethylene glycol[J]. 中国化学工程学报, 2023, 54(2): 280-287.
[1] R.S. Haszeldine, Carbon capture and storage: How green can black be?, Science, 325 (2009) 1647-1652. [2] D.M. D'Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: prospects for new materials, Angew. Chem. Int. Ed Engl. 49 (35) (2010) 6058–6082. [3] J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, Advances in CO2 capture technology—the US Department of Energy's Carbon Sequestration Program, Int. J. Greenhouse Gas Control, 2 (2008) 9-20. [4] X. Chen, G.T. Rochelle, Thermodynamics of CO2/2-methylpiperazine/water, Ind. Eng. Chem. Res., 52 (2013) 4229-4238. [5] G.T. Rochelle, Amine Scrubbing for CO2 Capture, Science, 325 (2009) 1652-1654. [6] H. Weiss, Rectisol wash for purification of partial oxidation gases, Gas Separation & Purification, 2 (1988) 171-176. [7] A. Bandyopadhyay, Amine versus ammonia absorption of CO2 as a measure of reducing GHG emission: a critical analysis, Clean Technol. Environ. Policy 13 (2) (2011) 269–294.[8] K.E. Gutowski, E.J. Maginn, Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation, J. Am. Chem. Soc. 130 (44) (2008) 14690–14704. [8] A. Bandyopadhyay, Amine versus ammonia absorption of CO2 as a measure of reducing GHG emission: a critical analysis, Clean Technol. Environ. Policy 13 (2) (2011) 269–294.[8] K.E. Gutowski, E.J. Maginn, Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation, J. Am. Chem. Soc. 130 (44) (2008) 14690–14704. [9] C. Wang, X. Luo, X. Zhu, G. Cui, D.-E. Jiang, D. Deng, H. Li, S. Dai, The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids, RSC Adv., 3 (2013) 15518-15527. [10] H. Liu, B. Liu, L.-C. Lin, G. Chen, Y. Wu, J. Wang, X. Gao, Y. Lv, Y. Pan, X. Zhang, X. Zhang, L. Yang, C. Sun, B. Smit, W. Wang, A hybrid absorption-adsorption method to efficiently capture carbon, Nat. Commun., 5 (2014) 5147. [11] C.M. Wang, X.Y. Luo, H.M. Luo, D.E. Jiang, H.R. Li, S. Dai, Tuning the basicity of ionic liquids for equimolar CO2 capture, Angew. Chem. Int. Ed., 50 (2011) 4918-4922. [12] L.A.“. Blanchard, D. Hancu, E.J.”. Beckman, J.F.“. Brennecke, Green processing using ionic liquids and CO2”>, Nature“> 399”> (6731“>) (1999) 28”>–29“>. [13] E.D. Bates, R.D. Mayton, I. Ntai, J.H. Davis, CO2 capture by a task-specific ionic liquid, J. Am. Chem. Soc., 124 (2002) 926-927. [14] T.P.T. Pham, C.-W. Cho, Y.-S. Yun, Environmental fate and toxicity of ionic liquids: a review, Water Res., 44 (2010) 352-372. [15] S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, S. Zhang, Ionic-liquid-based CO2 capture systems: structure, interaction and process, Chem. Rev., 117 (2017) 9625-9673. [16] G.K. Cui, J.J. Wang, S.J. Zhang, Active chemisorption sites in functionalized ionic liquids for carbon capture, Chem. Soc. Rev. 45 (15) (2016) 4307–4339. [17] K.E. Gubbins, K. Gu, L. Huang, Y. Long, J.M. Mansell, E.E. Santiso, K. Shi, M. Sliwinska-Bartkowiak, D. Srivastava, Surface-driven high-pressure processing, Engineering, 4 (2018) 311-320. [18] Y. Chen, Y. Sun, Z. Yang, X. Lu, X. Ji, CO2 separation using a hybrid choline-2-pyrrolidine-carboxylic acid/polyethylene glycol/water absorbent, Appl. Energy, 257 (2020) 113962. [19] J. Zhang, S. Zhang, K. Dong, Y. Zhang, Y. Shen, X. Lv, Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids, Chemistry-A European Journal, 12 (2006) 4021-4026. [20] X. Wang, N.G. Akhmedov, Y. Duan, D. Luebke, B. Li, Immobilization of amino acid ionic liquids into nanoporous microspheres as robust sorbents for CO2 capture, Journal of Materials Chemistry A, 1 (2013) 2978-2982. [21] N.H. Wu, X.Y. Ji, W.L. Xie, C. Liu, X. Feng, X.H. Lu, Confinement phenomenon effect on the CO2 absorption working capacity in ionic liquids immobilized into porous solid supports, Langmuir 33 (42) (2017) 11719–11726. [22] Y. Chen, Z. Dai, X. Ji, X. Lu, CO2 absorption using a hybrid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/polyethylene glycol absorbent, Fluid Phase Equilib., 538 (2021) 113011. [23] H. Li, B. Liu, M. Yang, D. Zhu, Z. Huang, W. Chen, L. Yang, G. Chen, CO2 separation performance of zeolitic imidazolate framework-8 porous slurry in a pilot-scale packed tower, Ind. Eng. Chem. Res., 59 (2020) 6154-6163. [24] L. Safaric, S.S. Yekta, J. Ejlertsson, M. Safari, H.N. Najafabadi, A. Karlsson, F. Ometto, B.H. Svensson, A. Bjorn, A comparative study of biogas reactor fluid rheology-implications for mixing profile and power demand, Processes, 7 (2019) 700. [25] K. Anoop, R. Sadr, R. Yrac, M. Amani, High-pressure rheology of alumina-silicone oil nanofluids, Powder Technol., 301 (2016) 1025-1031. [26] A. Ali, S.U. Ilyas, S. Garg, M. Alsaady, K. Maqsood, R. Nasir, A. Abdulrahman, M. Zulfiqar, A. Bin Mahfouz, A. Ahmed, S. Ridha, Dynamic viscosity of Titania nanotubes dispersions in ethylene glycol/water-based nanofluids: Experimental evaluation and predictions from empirical correlation and artificial neural network, Int. Commun. Heat Mass Transf., 118 (2020) 104882. [27] K.F.K. Adane, M. Agelin-Chaab, Laminar-turbulent transition flows of non-Newtonian slurries: models assessment, Journal of Fluids Engineering, 141 (2019) 011104. [28] W.J. Tseng, K.C. Lin, Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions, Mater. Sci. Eng. A 355 (1–2) (2003) 186–192.[29] I.M. Alarifi, A.B. Alkouh, V. Ali, H.M. Nguyen, A. Asadi, On the rheological properties of MWCNT-TiO2/oil hybrid nanofluid: an experimental investigation on the effects of shear rate, temperature, and solid concentration of nanoparticles, Powder Technol. 355 (2019) 157–162. [29] W.J. Tseng, K.C. Lin, Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions, Mater. Sci. Eng. A 355 (1–2) (2003) 186–192.[29] I.M. Alarifi, A.B. Alkouh, V. Ali, H.M. Nguyen, A. Asadi, On the rheological properties of MWCNT-TiO2/oil hybrid nanofluid: an experimental investigation on the effects of shear rate, temperature, and solid concentration of nanoparticles, Powder Technol. 355 (2019) 157–162. [30] Y. Liu, J. Chen, J. Song, Z. Hai, X. Lu, X. Ji, C. Wang, Adjusting the rheological properties of corn-straw slurry to reduce the agitation power consumption in anaerobic digestion, Bioresour. Technol., 272 (2019) 360-369. [31] A.B. Metzner, J.C. Reed, Flow of non-Newtonian fluids—correlation of the laminar, transition, and turbulent-flow regions, AIChE J. 1 (4) (1955) 434–440.[32] L.B. Tian, F. Shen, H.R. Yuan, D.X. Zou, Y.P. Liu, B.N. Zhu, X.J. Li, Reducing agitation energy-consumption by improving rheological properties of corn stover substrate in anaerobic digestion, Bioresour. Technol. 168 (2014) 86–91.[33] B. Tang, Z. Zhang, Essence of disposing the excess sludge and optimizing the operation of wastewater treatment: rheological behavior and microbial ecosystem, Chemosphere 105 (2014) 1–13.[34] P.S. Yen, L.C. Chen, C.Y. Chien, R.M. Wu, D.J. Lee, Network strength and dewaterability of flocculated activated sludge, Water Res. 36 (3) (2002) 539–550.[35] H. Khanmohammadi, W. Wijanarko, N. Espallargas, Ionic liquids as additives in water-based lubricants: from surface adsorption to tribofilm formation, Tribol. Lett. 68 (4) (2020) 1–15.[36] J. Wu, L.W. Mu, J.H. Zhu, Y.F. Chen, X. Yin, X. Feng, X.H. Lu, R. Larsson, Y.J. Shi, Turning the solubility and lubricity of ionic liquids by absorbing CO2, Tribol. Int. 121 (2018) 223–230.[37] Y.F. Chen, C.Y. Ma, X.Y. Ji, Z.H. Yang, X.H. Lu, Thermodynamic study on aqueous polyethylene glycol 200 solution and performance assessment for CO2 separation, Fluid Phase Equilibria 504 (2020) 112336. [32] Y. Liu, J. Chen, J. Song, Z. Hai, X. Lu, X. Ji, C. Wang, Adjusting the rheological properties of corn-straw slurry to reduce the agitation power consumption in anaerobic digestion, Bioresour. Technol., 272 (2019) 360-369. [33] Y. Liu, J. Chen, J. Song, Z. Hai, X. Lu, X. Ji, C. Wang, Adjusting the rheological properties of corn-straw slurry to reduce the agitation power consumption in anaerobic digestion, Bioresour. Technol., 272 (2019) 360-369. [34] Y. Liu, J. Chen, J. Song, Z. Hai, X. Lu, X. Ji, C. Wang, Adjusting the rheological properties of corn-straw slurry to reduce the agitation power consumption in anaerobic digestion, Bioresour. Technol., 272 (2019) 360-369. [35] Y. Liu, J. Chen, J. Song, Z. Hai, X. Lu, X. Ji, C. Wang, Adjusting the rheological properties of corn-straw slurry to reduce the agitation power consumption in anaerobic digestion, Bioresour. Technol., 272 (2019) 360-369. [36] Y. Liu, J. Chen, J. Song, Z. Hai, X. Lu, X. Ji, C. Wang, Adjusting the rheological properties of corn-straw slurry to reduce the agitation power consumption in anaerobic digestion, Bioresour. Technol., 272 (2019) 360-369. [37] Y. Liu, J. Chen, J. Song, Z. Hai, X. Lu, X. Ji, C. Wang, Adjusting the rheological properties of corn-straw slurry to reduce the agitation power consumption in anaerobic digestion, Bioresour. Technol., 272 (2019) 360-369. [38] S. Fernes, I.B. Gomes, L.C. Simo, M. Simo, Overview on the hydrodynamic conditions found in industrial systems and its impact in (bio)fouling formation, Chem. Eng. J., 418 (2021) 129348. |
[1] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[2] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[3] | Huiqi Wang, Jianpo Ren, Shihao Zhang, Jiayu Dai, Yue Niu, Ketao Shi, Qiuxiang Yin, Ling Zhou. Measurement and correlation of solubility of 9-fluorenone in 11 pure organic solvents from T = 283.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 235-241. |
[4] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[5] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 135-145. |
[6] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[7] | Yaran Bu, Changchun Wu, Lili Zuo, Qian Chen. The calculation and optimal allocation of transmission capacity in natural gas networks with MINLP models [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 251-261. |
[8] | Chen Chen, Qiong Tang, Hong Xu, Mingxing Tang, Xuekuan Li, Lei Liu, Jinxiang Dong. Alkyl-tetralin base oils synthesized from coal-based chemicals and evaluation of their lubricating properties [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 20-28. |
[9] | Junhao Wang, Shugang Ma, Peng Chen, Zhipeng Li, Zhengming Gao, J. J. Derksen. Mixing of miscible shear-thinning fluids in a lid-driven cavity [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 112-123. |
[10] | Weikai Ren, Runsong Dai, Ningde Jin. Modeling of liquid film thickness around Taylor bubbles rising in vertical stagnant and co-current slug flowing liquids [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 179-194. |
[11] | Hongwei Liang, Wenling Li, Zisheng Feng, Jianming Chen, Guangwen Chu, Yang Xiang. Numerical simulation of gas-liquid flow in the bubble column using Wray-Agarwal turbulence model coupled with population balance model [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 205-223. |
[12] | Yun-Zhang Liu, Lu-Yao Zhang, Dan He, Li-Zhen Chen, Zi-Shuai Xu, Jian-Long Wang. Solubility measurement, correlation and thermodynamic properties of 2, 3, 4-trichloro-1, 5-dinitrobenzene in fifteen mono-solvents at temperatures from 278.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 224-233. |
[13] | Danlei Chen, Yiqing Luo, Xigang Yuan. Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 244-255. |
[14] | Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 355-363. |
[15] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 10-16. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 32
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 136
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||