Chinese Journal of Chemical Engineering ›› 2023, Vol. 60 ›› Issue (8): 212-227.DOI: 10.1016/j.cjche.2023.01.015
Previous Articles Next Articles
Lingli Chen1, Yueting Shi1, Sijun Xu1, Junle Xiong2, Fang Gao1, Shengtao Zhang1, Hongru Li1
Received:
2022-08-27
Revised:
2023-01-16
Online:
2023-10-28
Published:
2023-08-28
Contact:
Fang Gao,E-mail:fgao@cqu.edu.cn;Shengtao Zhang,E-mail:stzhang@cqu.edu.cn;Hongru Li,E-mail:hrli@cqu.edu.cn
Supported by:
Lingli Chen1, Yueting Shi1, Sijun Xu1, Junle Xiong2, Fang Gao1, Shengtao Zhang1, Hongru Li1
通讯作者:
Fang Gao,E-mail:fgao@cqu.edu.cn;Shengtao Zhang,E-mail:stzhang@cqu.edu.cn;Hongru Li,E-mail:hrli@cqu.edu.cn
基金资助:
Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study[J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227.
Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study[J]. 中国化学工程学报, 2023, 60(8): 212-227.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2023.01.015
[1] O. Fiehn, W. Weckwerth, Deciphering metabolic networks, Eur. J. Biochem. 270 (4) (2003) 579-588. [2] M.K. Egbo, A fundamental review on composite materials and some of their applications in biomedical engineering, J. King Saud Univ. Eng. Sci. 33 (8) (2021) 557-568. [3] L.C. Zhang, L.Y.Chen, A review on biomedical titanium alloys: Recent progress and prospect, Adv. Eng. Mater. 21 (4) (2019) 1801215. [4] S.J. Li, C.W. Guo, X. Wang, C. Guan, G. Chen, Corrosion inhibition coating based on the self-assembled polydopamine films and its anti-corrosion properties, Polymers 14 (4) (2022) 794. [5] M.L. Zheludkevich, I.M. Salvado, M.G.S. Ferreira, Sol-gel coatings for corrosion protection of metals, J. Mater. Chem. 15 (48) (2005) 5099-5111. [6] T.A. Söylev, M.G. Richardson, Corrosion inhibitors for steel in concrete: State-of-the-art report, Constr. Build. Mater. 22 (4) (2008) 609-622. [7] T.M. Lv, S.H. Zhu, L. Guo, S.T. Zhang, Experimental and theoretical investigation of indole as a corrosion inhibitor for mild steel in sulfuric acid solution, Res. Chem. Intermed.41 (10) (2015) 7073-7093. [8] P. Riani, G. Garbarino, A. Infantes-Molina, E. Rodríguez-Castellón, F. Canepa, G. Busca, Hydrogen from steam reforming of ethanol over cobalt nanoparticles: Effect of boron impurities, Appl. Catal. A Gen. 518 (2016) 67-77. [9] S. Shurbaji, P.T. Huong, T.M.Altahtamouni, Review on the visible light photocatalysis for the decomposition of ciprofloxacin, norfloxacin, tetracyclines, and sulfonamides antibiotics in wastewater, Catalysts 11 (4) (2021) 437. [10] Y.T. Shi, L.L. Chen, S.T. Zhang, H.R. Li, F. Gao, New branched benign compounds including double antibiotic scaffolds: Synthesis, simulation and adsorption for anticorrosion effect on mild steel, Front. Chem. Sci. Eng. (2022) 1-16. [11] K.F. Khaled, The inhibition of benzimidazole derivatives on corrosion of iron in 1 M HCl solutions, Electrochimica Acta 48 (17) (2003) 2493-2503. [12] B.C. Tan, S.T. Zhang, H.Y. Liu, Y.W. Guo, Y.J. Qiang, W.P. Li, L. Guo, C.L. Xu, S.J. Chen, Corrosion inhibition of X65 steel in sulfuric acid by two food flavorants 2-isobutylthiazole and 1-(1, 3-Thiazol-2-yl) ethanone as the green environmental corrosion inhibitors: Combination of experimental and theoretical researches, J. Colloid Interface Sci. 538 (2019) 519-529. [13] M Frisch, G Trucks, H Schlegel, G Scuseria, M Robb, J Cheeseman, G Scalmani, V Barone, B Mennucci, G Petersson, Gaussian 09, Revision D. 01; Wallingford CT: Gaussian, Inc., 2013. [14] V.A. Adole, B.S. Jagdale, T.B. Pawar, A.B.Sawant, Experimental and theoretical exploration on single crystal, structural, and quantum chemical parameters of (E)-7-(arylidene)-1, 2, 6, 7-tetrahydro-8 H-indeno[5, 4-b]furan-8-one derivatives: A comparative study, J. Chin. Chem. Soc. 67 (10) (2020) 1763-1777. [15] A.H.Radhi, HOMO-LUMO energies and geometrical structures effecton corrosion inhibition for organic compounds predict by DFT and PM3 methods, NeuroQuantology 18 (1) (2020) 37-45. [16] C.Y. Lee, T.J. Lin, H.H. Sheu, H.B. Lee, A study on corrosion and corrosion-wear behavior of Fe-based amorphous alloy coating prepared by high velocity oxygen fuel method, J. Mater. Res. Technol. 15 (2021) 4880-4895. [17] M. Tourabi, K. Nohair, M. Traisnel, C. Jama, F. Bentiss, Electrochemical and XPS studies of the corrosion inhibition of carbon steel in hydrochloric acid pickling solutions by 3, 5-bis(2-thienylmethyl)-4-amino-1, 2, 4-triazole, Corros. Sci. 75 (2013) 123-133. [18] X.Z. Wang, Z. Wang, X.S. Jiang, M. Zhang, Y.F. Wang, J.G. Lv, G. He, Z.Q.Sun, In-situ deposition and growth of Cu2ZnSnS4Nanocrystals on TiO2Nanorod arrays for enhanced photoelectrochemical performance, J. Electrochem. Soc. 164 (13) (2017) H863-H871. [19] Z. Zhang, N.C. Tian, L.Z. Zhang, L. Wu, Inhibition of the corrosion of carbon steel in HCl solution by methionine and its derivatives, Corros. Sci. 98 (2015) 438-449. [20] Nor Zakiah Nor Hashim, Karimah Kassim, Hamizah Mohd Zaki, Abdulrahman I Alharthi and Zaidi Embong, XPS and DFT investigations of corrosion inhibition of substituted benzylidene Schiff bases on mild steel in hydrochloric acid, Appl. Surf. Sci., 476(2019)861-877. [21] D.M. Collins, T. Erinosho, F.P.E. Dunne, R.I. Todd, T. Connolley, M. Mostafavi, H. Kupfer, A.J. Wilkinson, A synchrotron X-ray diffraction study of non-proportional strain-path effects, Acta Mater. 124 (2017) 290-304. [22] P. Mourya, S. Banerjee, R.B. Rastogi, M.M.Singh, Inhibition of mild steel corrosion in hydrochloric and sulfuric acid media using a thiosemicarbazone derivative, Ind. Eng. Chem. Res. 52 (36) (2013) 12733-12747. [23] R.V. Siriwardane, J.A. Poston Jr, E.P. Fisher, M.S. Shen, A.L. Miltz, Decomposition of the sulfates of copper, iron (II), iron (III), nickel, and zinc: XPS, SEM, DRIFTS, XRD, and TGA study, Appl. Surf. Sci. 152 (3-4) (1999) 219-236. [24] S.J. Yuan, S.O. Pehkonen, B. Liang, Y.P. Ting, K.G. Neoh, E.T. Kang, Superhydrophobic fluoropolymer-modified copper surface via surface graft polymerisation for corrosion protection, Corros. Sci. 53 (9) (2011) 2738-2747. [25] J. Haque, V. Srivastava, M.A. Quraishi, D. Singh Chauhan, H. Lgaz, I.M. Chung, Polar group substituted imidazolium zwitterions as eco-friendly corrosion inhibitors for mild steel in acid solution, Corros. Sci. 172 (2020) 108665. [26] A.H. Tantawy, K.A. Soliman, H.M. Abd El-Lateef, Novel synthesized cationic surfactants based on natural piper nigrum as sustainable-green inhibitors for steel pipeline corrosion in CO2-3.5%NaCl: DFT, Monte Carlo simulations and experimental approaches, J. Clean. Prod. 250 (2020) 119510. [27] M. Basik, M. Mobin, Chondroitin sulfate as potent green corrosion inhibitor for mild steel in 1 M HCl, J. Mol. Struct. 1214 (2020) 128231. [28] A. Farhadian, A. Rahimi, N. Safaei, A. Shaabani, M. Abdouss, A. Alavi, A theoretical and experimental study of castor oil-based inhibitor for corrosion inhibition of mild steel in acidic medium at elevated temperatures, Corros. Sci. 175 (2020) 108871. [29] S.K. Saha, A. Dutta, P. Ghosh, D. Sukul, P. Banerjee, Adsorption and corrosion inhibition effect of Schiff base molecules on the mild steel surface in 1 mol·L-1 HCl medium: A combined experimental and theoretical approach, Phys. Chem. Chem. Phys. 17 (8) (2015) 5679-5690. [30] X.L. Zuo, W.P. Li, W. Luo, X. Zhang, Y.J. Qiang, J. Zhang, H. Li, B.C. Tan, Research of Lilium brownii leaves extract as a commendable and green inhibitor for X70 steel corrosion in hydrochloric acid, J. Mol. Liq. 321 (2021) 114914. [31] M.D. Levi, D.Aurbach, Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium, J. Phys. Chem. B 101 (23) (1997) 4630-4640. [32] X.W. Zheng, S.T. Zhang, W.P. Li, L.L. Yin, J.H. He, J.F. Wu, Investigation of 1-butyl-3-methyl-1H-benzimidazolium iodide as inhibitor for mild steel in sulfuric acid solution, Corros. Sci. 80 (2014) 383-392. [33] X.W. Zheng, S.T. Zhang, W.P. Li, M. Gong, L.L. Yin, Experimental and theoretical studies of two imidazolium-based ionic liquids as inhibitors for mild steel in sulfuric acid solution, Corros. Sci. 95 (2015) 168-179. [34] I Ahamad, S Khan, KR Ansari and MA Quraishi, Primaquine: A pharmaceutically active compound as corrosion inhibitor for mild steel in hydrochloric acid solution, J Chem Pharm Res. 3(2)(2011)703-717. [35] F. Bentiss, M. Lebrini, M. Lagrenée, M. Traisnel, A. Elfarouk, H. Vezin, The influence of some new 2, 5-disubstituted 1, 3, 4-thiadiazoles on the corrosion behaviour of mild steel in 1 mol·L-1 HCl solution: AC impedance study and theoretical approach, Electrochimica Acta 52 (24) (2007) 6865-6872. [36] M. Kissi, M. Bouklah, B. Hammouti, M. Benkaddour, Establishment of equivalent circuits from electrochemical impedance spectroscopy study of corrosion inhibition of steel by pyrazine in sulphuric acidic solution, Appl. Surf. Sci. 252 (12) (2006) 4190-4197. [37] M. Vadi, A.O. Mansoorabad, M. Mohammadi, N.Rostami, Investigation of Langmuir, freundlich and temkin adsorption isotherm of tramadol by multi-wall carbon nanotube, Asian J. Chem. 25 (10) (2013) 5467-5469. [38] V.L. Kolev, K.D. Danov, P.A. Kralchevsky, G. Broze, A.Mehreteab, Comparison of the van der waals and Frumkin adsorption isotherms for sodium dodecyl sulfate at various salt concentrations, Langmuir 18 (23) (2002) 9106-9109. [39] R.J. UmplebyII, S.C. Baxter, M. Bode, J.K. BerchJr, R.N. Shah, K.D. Shimizu, Application of the Freundlich adsorption isotherm in the characterization of molecularly imprinted polymers, Anal. Chimica Acta 435 (1) (2001) 35-42. [40] B. Debnath, M. Majumdar, M. Bhowmik, K.L. Bhowmik, A. Debnath, D.N. Roy, The effective adsorption of tetracycline onto zirconia nanoparticles synthesized by novel microbial green technology, J Environ Manage 261 (2020) 110235. [41] I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies, J. Hazard. Mater. 154 (1-3) (2008) 337-346. [42] A. Nuhnen, C. Janiak, A practical guide to calculate the isosteric heat/enthalpy of adsorption via adsorption isotherms in metal-organic frameworks, MOFs, Dalton Trans. 49 (30) (2020) 10295-10307. [43] H.M. Abd El-Lateef, Experimental and computational investigation on the corrosion inhibition characteristics of mild steel by some novel synthesized imines in hydrochloric acid solutions, Corros. Sci. 92 (2015) 104-117. [44] F. Tezcan, G. Yerlikaya, A. Mahmood, G. Kardaş, A novel thiophene Schiff base as an efficient corrosion inhibitor for mild steel in 1.0 M HCl: Electrochemical and quantum chemical studies, J. Mol. Liq. 269 (2018) 398-406. [45] M.P. Andersson, P. Uvdal, New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-zeta basis set 6-311+G(d, p), J. Phys. Chem. A 109 (12) (2005) 2937-2941. [46] S.K. Saha, M. Murmu, N.C. Murmu, P. Banerjee, Evaluating electronic structure of quinazolinone and pyrimidinone molecules for its corrosion inhibition effectiveness on target specific mild steel in the acidic medium: A combined DFT and MD simulation study, J. Mol. Liq. 224 (2016) 629-638. [47] L. Guo, Z.S. Safi, S. Kaya, W. Shi, B. Tüzün, N. Altunay, C.Kaya, Anticorrosive effects of some thiophene derivatives against the corrosion of iron: A computational study, Front. Chem. 6 (2018) 155. [48] A. Zarrouk, B. Hammouti, A. Dafali, M. Bouachrine, H. Zarrok, S. Boukhris, S.S. Al-Deyab, A theoretical study on the inhibition efficiencies of some quinoxalines as corrosion inhibitors of copper in nitric acid, J. Saudi Chem. Soc. 18 (5) (2014) 450-455. [49] R.G.Pearson, Absolute electronegativity and hardness: Application to inorganic chemistry, Inorg. Chem. 27 (4) (1988) 734-740. [50] R.F. Peterson, D.F. Treagust, P.Garnett, Development and application of a diagnostic instrument to evaluate grade-11 and-12 students' concepts of covalent bonding and structure following a course of instruction, J. Res. Sci. Teach. 26 (4) (1989) 301-314. [51] F.J.Baltá Calleja, Microhardness relating to crystalline polymers. Characterization of Polymers in the Solid State I: Part A: NMR and Other Spectroscopic Methods Part B: Mechanical Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985: 117-148. [52] F. Meyers, S.R. Marder, B.M. Pierce, J.L.Bredas, Electric field modulated nonlinear optical properties of donor-acceptor polyenes: Sum-over-states investigation of the relationship between molecular polarizabilities (.alpha., .beta., and.gamma.) and bond length alternation, J. Am. Chem. Soc. 116 (23) (1994) 10703-10714. [53] T. Arslan, F. Kandemirli, E.E. Ebenso, I. Love, H. Alemu, Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium, Corros. Sci. 51 (1) (2009) 35-47. [54] F.A. Azeez, O.A. Al-Rashed, A. Abdel Nazeer, Controlling of mild-steel corrosion in acidic solution using environmentally friendly ionic liquid inhibitors: Effect of alkyl chain, J. Mol. Liq. 265 (2018) 654-663. [55] A.H. Mostafatabar, G. Bahlakeh, B. Ramezanzadeh, A. Dehghani, M. Ramezanzadeh, A comprehensive electronic-scale DFT modeling, atomic-level MC/MD simulation, and electrochemical/surface exploration of active nature-inspired phytochemicals based on Heracleum persicum seeds phytoextract for effective retardation of the acidic-induced corrosion of mild steel, J. Mol. Liq. 331 (2021) 115764. [56] A.P.S. Kaban, A. Ridhova, G. Priyotomo, B. Elya, A. Maksum, Y. Sadeli, S. Sutopo, T. Aditiyawarman, R. Riastuti, J.W.Soedarsono, Development of white tea extract as green corrosion inhibitor in mild steel under 1 M hydrochloric acid solution, East. Eur. J. Enterp. Technol. 2 (6 (110)) (2021) 6-20. [57] J.M. Bastidas, J.L. Polo, E. Cano, C.L. Torres, Tributylamine as corrosion inhibitor for mild steel in hydrochloric acid, J. Mater. Sci. 35 (11) (2000) 2637-2642. [58] M. Jokar, T.S. Farahani, B. Ramezanzadeh, Electrochemical and surface characterizations of morus alba pendula leaves extract (MAPLE) as a green corrosion inhibitor for steel in 1 M HCl, J. Taiwan Inst. Chem. Eng. 63 (2016) 436-452. [59] M. Rbaa, F. Benhiba, A.S. Abousalem, M. Galai, Z. Rouifi, H. Oudda, B. Lakhrissi, I. Warad, A. Zarrouk, Sample synthesis, characterization, experimental and theoretical study of the inhibitory power of new 8-hydroxyquinoline derivatives for mild steel in 1.0 M HCl, J. Mol. Struct. 1213 (2020) 128155. [60] E. Altunbaş Şahin, R. Solmaz, İ.H. Gecibesler, G.Kardaş, Adsorption ability, stability and corrosion inhibition mechanism of phoenix dactylifera extrat on mild steel, Mater. Res. Express 7 (1) (2020) 016585. [61] E.E. Oguzie, Y. Li, F.H. Wang, Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion, J. Colloid Interface Sci. 310 (1) (2007) 90-98. [62] J. Aslam, R. Aslam, I.H. Lone, N.R.E. Radwan, M. Mobin, A. Aslam, M. Parveen, A.A. Al-Freedi, A.A.Alzulaibani, Inhibitory effect of 2-Nitroacridone on corrosion of low carbon steel in 1 mol·L-1 HCl solution: An experimental and theoretical approach, J. Mater. Res. Technol. 9 (3) (2020) 4061-4075. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[3] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[4] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[5] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[6] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[7] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[8] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[9] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[10] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
[11] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 319-328. |
[12] | Hany M. Abd El-Lateef, Mai M. Khalaf, K. Shalabi, Antar A. Abdelhamid. Multicomponent synthesis and designing of tetrasubstituted imidazole compounds catalyzed via ionic-liquid for acid steel corrosion protection: Experimental exploration and theoretical calculations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 304-319. |
[13] | Zhongqi Ren, Jie Wang, Hewei Zhang, Fan Zhang, Shichao Tian, Zhiyong Zhou. Adsorption of rubidium ion from aqueous solution by surface ion imprinted materials [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 1-10. |
[14] | Mengge Shang, Jing Zhang, Jinqiang Sun, Shimo Yu, Feng Hua, Xiaoxu Xuan, Xun Sun, Serguei Filatov, Xibin Yi. Amine-functionalized mesoporous UiO-66 aerogel for CO2 adsorption [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 36-43. |
[15] | Bo Pan, Biao Liu, Shaona Wang, Yeqing Lv, Hao Du, Yi Zhang. Understanding the hydroxyl adsorption behavior at Pt electrode surface in high-temperature alkaline solutions [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 173-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||