[1] A. Salehi, X.Y. Fu, D.H. Shin, F.So, Recent advances in OLED optical design, Adv. Funct. Mater. 29 (15) (2019) 1808803. [2] G. Hong, X.M. Gan, C. Leonhardt, Z. Zhang, J. Seibert, J.M. Busch, S. Bräse, A brief history of OLEDs-emitter development and industry milestones, Adv. Mater. 33 (9) (2021) e2005630. [3] M. Jong, Han, Advances in soft materials for sustainable electronics, Engineering 7 (5) (2021) 564-580. [4] H. Kwon, S. Kang, S. Park, S. Park, J. Park, Hybrid two-color pink emission device of perovskite red quantum dot materials using organic blue emitter, Appl Nanosci 12 (11) (2022) 3343-3351. [5] P.P. Du, J.H. Li, L. Wang, L. Sun, X. Wang, X. Xu, L.B. Yang, J.C. Pang, W.X. Liang, J.J. Luo, Y. Ma, J. Tang, Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement, Nat. Commun. 12 (1) (2021) 4751. [6] Z.K. Zhang, J.H. Du, D.D. Zhang, H.D. Sun, L.C. Yin, L.P. Ma, J.S. Chen, D.G. Ma, H.M. Cheng, W.C. Ren, Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes, Nat. Commun. 8 (2017) 14560. [7] B. Clement, M.Q. Lyu, E. Sandeep Kulkarni, tongen Lin, Y.X. Hu, V. Lockett, C. Greig, L.Z.Wang, Recent advances in printed thin-film batteries, Engineering 13 (2022) 238-261. [8] N. Ikeda, S. Oda, R. Matsumoto, M. Yoshioka, D. Fukushima, K. Yoshiura, N. Yasuda, T. Hatakeyama, Solution-processable pure green thermally activated delayed fluorescence emitter based on the multiple resonance effect, Adv. Mater. 32 (40) (2020) e2004072. [9] K.M. Kuznetsov, M.I. Kozlov, A.N. Aslandukov, A.A. Vashchenko, A.V. Medved'ko, E.V. Latipov, A.S. Goloveshkin, D.M. Tsymbarenko, V.V. Utochnikova, Eu(tta)3DPPZ-based organic light-emitting diodes: spin-coating vs. vacuum-deposition, Dalton Trans. 50 (28) (2021) 9685-9689. [10] Y.Z. Zou, H. Huang, Y. Pu, J.X. Wang, D. Wang, J.F.Chen, Solubility, solubility modeling, and antisolvent precipitation of 1, 3-bis(9-carbazolyl)benzene in organic solvents, J. Chem. Eng. Data 64 (10) (2019) 4349-4356. [11] Wang R, Zou Y, Guo J, Pu Y, Wang D. Solubility and solubility modeling of 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene toward nanodispersions in organic solvents. Journal of Chemical & Engineering Data 66 (2021) 2568-2575. [12] Y. Wada, S. Kubo, H. Kaji, Adamantyl substitution strategy for realizing solution-processable thermally stable deep-blue thermally activated delayed fluorescence materials, Adv. Mater. 30 (8) (2018) 1705641. [13] Chensen, Li, Highly efficient white-emitting thermally activated delayed fluorescence polymers: synthesis, non-doped white OLEDs and electroluminescent mechanism, Nano Energy 65 (2019) 104057. [14] Yuanzuo, Zou, Synthesis of poly(9, 9-dioctylfluorene) in a rotating packed bed with enhanced performance for polymer light-emitting diodes, Polym. Chem. 13 (23) (2022) 3506-3512. [15] A.A.M, Farag, Towards significant enhancement of structural and optoelectronic properties of porphyrin palladium(II) complex: a theoretical and experimental analysis, J. Mol. Struct. 1232 (2021) 129933. [16] J.T. Kim, J. Lee, S. Jang, Z.K. Yu, J.H. Park, E. Dae Jung, S. Lee, M.H. Song, D.R. Whang, S. Wu, S.H. Park, D.W. Chang, B.R. Lee, Solution processable small molecules as efficient electron transport layers in organic optoelectronic devices, J. Mater. Chem. A 8 (27) (2020) 13501-13508. [17] K. Ge, Y.H. Ji, X.H.Lu, A novel interfacial thermodynamic model for predicting solubility of nanoparticles coated by stabilizers, Chin. J. Chem. Eng. 31 (2021) 103-112. [18] Yuan, Pu, A green route to beclomethasone dipropionate nanoparticles via solvent anti-solvent precipitation by using subcritical water as the solvent, Powder Technol. 308 (2017) 200-205. [19] Y. Pu, J.X. Wang, D. Wang, N.R. Foster, J.F.Chen, Subcritical water processing for nanopharmaceuticals, Chem. Eng. Process. Process. Intensif. 140 (2019) 36-42. [20] W.S. Saad, R.K. Prud'homme, Principles of nanoparticle formation by flash nanoprecipitation, Nano Today. 11 (2) (2016) 212-227 [21] S. Hua, M.B.C. de Matos, J.M. Metselaar, G. Storm, Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization, Front. Pharmacol. 9 (2018) 790. [22] I.S. Mohammad, H. Hu, L. Yin, W. He, Drug nanocrystals: fabrication methods and promising therapeutic applications, Int. J. Pharm. 562 (2019) 187-202. [23] H. Zhang, D.W. Liu, J.B. Wen, G.Y. Sun, C.X. Li, X.Y. Chen, H.H. Zhang, Z.Duan, Co-adsorption behaviors of asphaltenes and different flow improvers and their impacts on the interfacial viscoelasticity, Chin. J. Chem. Eng. 48 (2022) 149-157. [24] J.Q. Ding, N. Xu, M.T. Nguyen, Q. Qiao, Y. Shi, Y. He, Q.Shao, Machine learning for molecular thermodynamics, Chin. J. Chem. Eng. 31 (2021) 227-239. [25] J.Z. Guo, J.W. Yang, Y.Z. Zou, Y. Pu, D.Wang, Solubility determination and modeling of 9, 9-dihexyl-2, 7-dibromofluorene in twelve solvent systems at 283.15-323.15 K, J. Chem. Eng. Data 67 (10) (2022) 3310-3316. [26] S.M. Abuzar, S.M. Hyun, J.H. Kim, H.J. Park, M.S. Kim, J.S. Park, S.J. Hwang, Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process, Int. J. Pharm. 538 (1-2) (2018) 1-13. [27] Z.P. Zou, Y. Yu, X. Fang, G.J. Liu, L.Xu, Determination and correlation of solubility and solution thermodynamics of musk xylene in different pure solvents, J. Chem. Thermodyn. 135 (2019) 205-214. [28] W.C. Chen, Y.W. Fan, L.L. Zhang, B.C. Sun, Y. Luo, H.K. Zou, G.W. Chu, J.F.Chen, Computational fluid dynamic simulation of gas-liquid flow in rotating packed bed: a review, Chin. J. Chem. Eng. 41 (2022) 85-108. [29] J. Liu, Y.R. Jiao, Y. Pu, J.X. Wang, D.Wang, Scalable synthesis of ytterbium and erbium codoped calcium molybdate phosphors as upconversion luminescent thermometer, Aiche J. 67 (11) (2021) e17399. [30] Y. Takebayashi, N. Morii, K. Sue, T. Furuya, S. Yoda, D. Ikemizu, H.Taka, Solubility of N, N’-di(1-naphthyl)-N, N’-diphenyl benzidine (NPB) in various organic solvents: measurement and correlation with the Hansen solubility parameter, Ind. Eng. Chem. Res. 54 (35) (2015) 8801-8808. [31] Caixia, Xu, Electrosynthesis and characterization of a neutrally colorless electrochromic material from poly(1, 3-bis(9H-carbazol-9-yl)benzene) and its application in electrochromic devices, Electrochimica Acta 75 (2012) 28-34. [32] F. Emmerling, I. Orgzall, B. Dietzel, B. Schulz, J.Larrucea, Ordering the amorphous - Structures in PBD LED materials, J. Mol. Struct. 1030 (2012) 209-215. [33] B. Sinha, R.H. Müller, J.P. Möschwitzer, Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size, Int. J. Pharm. 453 (1) (2013) 126-141. [34] F.L.O. Da Silva, M.B.F. Marques, K.C. Kato, G. Carneiro, Nanonization techniques to overcome poor water-solubility with drugs, Expert Opin. Drug Discov. 15 (7) (2020) 853-864. [35] M. Jarvis, V. Krishnan, S. Mitragotri, Nanocrystals: a perspective on translational research and clinical studies, Bioeng. Transl. Med. 4 (1) (2018) 5-16. [36] W.S. Cheow, K. Hadinoto, Self-assembled amorphous drug-polyelectrolyte nanoparticle complex with enhanced dissolution rate and saturation solubility, J. Colloid Interface Sci. 367 (1) (2012) 518-526. [37] H.B. Chen, C. Khemtong, X.L. Yang, X.L. Chang, J.M. Gao, Nanonization strategies for poorly water-soluble drugs, Drug Discov. Today 16 (7-8) (2011) 354-360. |