[1] N. Chakinala, A.G.Chakinala, Process design strategies to produce p-xylene via toluene methylation: a review, Ind. Eng. Chem. Res. 60 (15) (2021) 5331–5351. [2] X. Huang, R.Z. Wang, X. Pan, C.F. Wang, M.H. Fan, Y.F. Zhu, Y.G. Wang, J.Peng, Catalyst design strategies towards highly shape-selective HZSM-5 for Para-xylene through toluene alkylation, Green Energy Environ. 5 (4) (2020) 385–393. [3] A.K. Aboul-Gheit, S.M. Aboul-Fotouh, E.A. Emam, S.M.Ahmed, Catalytic para-xylene maximization. V. toluene methylation with methanol and disproportionation of toluene using Pt/ZSM-5 and Pt/mordenite catalysts, Jnl Chin. Chemical Soc 51 (4) (2004) 817–826. [4] T. Odedairo, R.J. Balasamy, S.Al-Khattaf, Toluene disproportionation and methylation over zeolites TNU-9, SSZ-33, ZSM-5, and mordenite using different reactor systems, Ind. Eng. Chem. Res. 50 (6) (2011) 3169–3183. [5] D. Parmar, S.H. Cha, T. Salavati-Fard, A. Agarwal, H. Chiang, S.M. Washburn, J.C. Palmer, L.C. Grabow, J.D. Rimer, Spatiotemporal coke coupling enhances para-xylene se-lectivity in highly stable MCM-22 catalysts, J. Am. Chem. Soc. 144 (17) (2022) 7861–7870. [6] A.M. Prakash, S.V.V. Chilukuri, R.P. Bagwe, S. Ashtekar, D.K.Chakrabarty, Silicoalu-minophosphate molecular sieves SAPO-11, SAPO-31 and SAPO-41: synthesis, characteri-zation and alkylation of toluene with methanol, Microporous Mater. 6 (2) (1996) 89–97. [7] G.X. Li, C. Wu, D. Ji, P. Dong, Y.F. Zhang, Y. Yang, Acidity and catalyst performance of two shape-selective HZSM-5 catalysts for alkylation of toluene with methanol, Reac Kinet Mech Cat 129 (2) (2020) 963–974. [8] W. Tan, M. Liu, Y. Zhao, K.K. Hou, H.Y. Wu, A.F. Zhang, H.O. Liu, Y.R. Wang, C.S. Song, X.W.Guo, Para-selective methylation of toluene with methanol over nano-sized ZSM-5 catalysts: Synergistic effects of surface modifications with SiO2, P2O5 and MgO, Microporous Mesoporous Mater. 196 (2014) 18–30. [9] M. Miyamoto, T. Kamei, N. Nishiyama, Y. Egashira, K.Ueyama, Single crystals of ZSM-5/silicalite composites, Adv. Mater. 17 (16) (2005) 1985–1988. [10] S. Lee, M. Choi. Unveiling coke formation mechanism in MFI zeolites during metha-nol-to-hydrocarbons conversion, J. Catal. 375 (2019) 183–192. [11] F. Schmidt, C. Hoffmann, F. Giordanino, S. Bordiga, P. Simon, W. Carrillo-Cabrera, S.Kaskel, Coke location in microporous and hierarchical ZSM-5 and the impact on the MTH reaction, J. Catal. 307 (2013) 238–245. [12] S. Müller, Y. Liu, M. Vishnuvarthan, X.Y. Sun, A. Veen, G.L. Haller, M. Sanchez-Sanchez, J. Lercher, Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins, J. Catal. 325 (2015) 48–59. [13] J.H. Li, H. Xiang, M. Liu, Q.L. Wang, Z.R. Zhu, Z.H. Hu, The deactivation mechanism of two typical shape-selective HZSM-5 catalysts for alkylation of toluene with methanol, Catal. Sci. Technol. 4 (8) (2014) 2639–2649. [14] I. Lezcano-Gonzalez, E. Campbell, A.E.J. Hoffman, M. Bocus, I.V. Sazanovich, M. Towrie, M. Agote-Aran, E.K. Gibson, A. Greenaway, K. De Wispelaere, V. Van Speybroeck, A.M. Beale, Insight into the effects of confined hydrocarbon species on the lifetime of methanol conversion catalysts, Nat. Mater. 19 (10) (2020) 1081–1087. [15] Chunhui, Cheng, Regulating hierarchical structure and acidity of HZSM-5 for methanol to aromatics via protective desiliconization and external surface modification, Microporous Mesoporous Mater. 312 (2021) 110784. [16] N. Wang, J. Li, W.J. Sun, Y.L. Hou, L. Zhang, X.M. Hu, Y.F. Yang, X. Chen, C.M. Chen, B.H. Chen, W.Z. Qian, Rational design of zinc/zeolite catalyst: selective formation of p-xylene from methanol to aromatics reaction, Angew. Chem. Int. Ed Engl. 61 (10) (2022) e202114786. [17] H. Han, A.F. Zhang, L.M. Ren, X.W. Nie, M. Liu, Y. Liu, C. Shi, H. Yang, C.S. Song, X.W.Guo, Coke-resistant (Pt + Ni)/ZSM-5 catalyst for shape-selective alkylation of toluene with methanol to para-xylene, Chem. Eng. Sci. 252 (2022) 117529. [18] H.L. Hu, Q.F. Zhang, J. Cen, X.N. Li, Catalytic activity of Pt modified hierarchical ZSM-5 catalysts in benzene alkylation with methanol, Catal Lett 145 (2) (2015) 715–722. [19] D.L. Wang, Y.W. Li, Y. Zhao, D. Ji, P. Dong, G.X. Li, Study on the reaction strategy of directional alkylation fulfilled by controlling the adsorption pose of benzene and methanol in space with Ru per hourZSM-5, BMC Chem. 15 (1) (2021) 35. [20] C. Wang, L. Zhang, X. Huang, Y. Zhu, G.K. Li, Q. Gu, J. Chen, L. Ma, X. Li, Q. He, J. Xu, Q. Sun, C. Song, M. Peng, J. Sun, D. Ma, Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene, Nat. Commun. 10 (1) (2019) 4348. [21] J. Wang, B. Zhang, Z.P. Zhong, K. Ding, A.D. Deng, M. Min, P. Chen, R.Ruan, Catalytic fast co-pyrolysis of bamboo residual and waste lubricating oil over an ex-situ dual catalytic beds of MgO and HZSM-5: analytical PY-GC/MS study, Energy Convers. Manag. 139 (2017) 222–231. [22] Songlin, Zhao, Selective hydrogenation of m-dinitrobenzene to m-nitroaniline catalyzed by PVP-Ru/Al2O3, Catal. Commun. 8 (9) (2007) 1305–1309. [23] Y.V. Larichev, B.L. Moroz, V.I. Zaikovskii, S.M. Yunusov, E.S. Kalyuzhnaya, V.B. Shur, V.I.Bukhtiyarov, XPS and TEM studies on the role of the support and alkali promoter in Ru/MgO and Ru–Cs+/MgO catalysts for ammonia synthesis, J. Phys. Chem. C 111 (26) (2007) 9427–9436. [24] P. Zhang, T.B. Wu, T. Jiang, W.T. Wang, H.Z. Liu, H.L. Fan, Z.F. Zhang, B.X. Han, Ru-Zn supported on hydroxyapatite as an effective catalyst for partial hydrogenation of benzene, Green Chem. 15 (1) (2013) 152–159. [25] H.J. Sun, H.X. Wang, H.B. Jiang, S.H. Li, S.C. Liu, Z.Y. Liu, X.M. Yuan, K.J.Yang, Effect of (Zn(OH)2)3(ZnSO4)(H2O)5 on the performance of Ru-Zn catalyst for benzene se-lective hydrogenation to cyclohexene, Appl. Catal. A Gen. 450 (2013) 160–168. [26] Z.K. Peng, W.D. Li, Y.L. Miao, S. Chen, G.J. Liu, S.C. Liu, J. Gao, B.J. Li, Z.Y.Liu, Ru nanospheres in water drops for enhanced catalytic performances in selective hydrogenation, ACS Appl. Energy Mater. 1 (8) (2018) 4277–4284. [27] H. Wang, L. Wang, F.S. Xiao, Metal@Zeolite hybrid materials for catalysis, ACS Cent. Sci. 6 (10) (2020) 1685–1697. [28] B.Z. Zhan, M.A. White, T.K. Sham, J.A. Pincock, R.J. Doucet, K.V.R. Rao, K.N. Robertson, T.Stanley Cameron, Zeolite-confined nano-RuO2: a green, selective, and efficient catalyst for aerobic alcohol oxidation, J. Am. Chem. Soc. 125 (8) (2003) 2195-2199. [29] X. Pan, B. Du, X Huang, R. Z. Wang, H. Wang, H. Y. Zhang, Y. Liu, D. P. Xu, Prepa-ration of core-shell structural twin HZSM-5@Silicalite-1 catalysts and its performance for toluene alkylation with methanol, J. Fuel. Chem. Technol. 50 (5) (2022) 611–620. [30] Q.T. Chen, J. Liu, B. Yang, Identifying the key steps determining the selectivity of tol-uene methylation with methanol over HZSM-5, Nat. Commun. 12 (1) (2021) 3725. [31] H. Dong, L. Zhang, Z.X. Fang, W.Q. Fu, T. Tang, Y. Feng, T.D. Tang, Acidic hierarchical zeolite ZSM-5 supported Ru catalyst with high activity and selectivity in the sele-no-functionalization of alkenes, RSC Adv. 7 (36) (2017) 22008–22016. [32] C. Wang, Y.Q. Wang, H.B. Chen, X. Wang, H.Y. Li, C. Sun, L.Y. Sun, C.Y. Fan, X.Zhang, Effect of phosphorus on the performance of IM-5 for the alkylation of toluene with methanol into p-xylene, Comptes Rendus Chimie 22 (1) (2019) 13–21. [33] L. Y. Sun,Y. Q. Wang, H. B. Chen, C. Sun, F. J. Meng, F. Gao, X. Wang, Direct synthesis of hierarchical ZnZSM-5 with addition of CTAB in a seeding method and improved catalytic performance in methanol to aromatics reaction, Catal. Today 316 (2018) 91–98. [34] A. Comas-Vives, M. Valla, C. Copéret, P. Sautet, Cooperativity between Al sites promotes hydrogen transfer and carbon-carbon bond formation upon dimethyl ether activation on alumina, ACS Cent. Sci. 1 (6) (2015) 313–319. [35] J.Novakova, Primary reaction steps in the methanol-to-olefin transformation on zeolites, J. Catal. 108 (1) (1987) 208–213. [36] M.W. Anderson, J. Klinowski, Direct observation of shape selectivity in zeolite ZSM-5 by magic-angle-spinning NMR, Nature 339 (6221) (1989) 200–203. [37] Y. Liu, S. Müller, D. Berger, J. Jelic, K. Reuter, M. Tonigold, M. Sanchez-Sanchez, J.A. Lercher, Formation mechanism of the first carbon-carbon bond and the first olefin in the methanol conversion into hydrocarbons, Angew. Chem. Int. Ed Engl. 55 (19) (2016) 5723–5726. [38] S. Tada, O.J. Ochieng, R. Kikuchi, T. Haneda, H.Kameyama, Promotion of CO2 methanation activity and CH4 selectivity at low temperatures over Ru/CeO2/Al2O3 catalysts, Int. J. Hydrog. Energy 39 (19) (2014) 10090–10100. [39] Tao, LI, Effect of support calcination temperature on the catalytic properties of Ru/Ce0.8Zr0.2O2 for methanation of carbon dioxide, J. Fuel Chem. Technol. 42 (12) (2014) 1440–1446. |